CHLORATES, the metallic salts of chloric acid; they are all solids, soluble in water, the least soluble being the potassium salt. They may be prepared by dissolving or suspending a metallic oxide or hydroxide in water and saturating the solution with chlorine; by double decomposition; or by neutralizing a solution of chloric acid by a metallic oxide, hydroxide or carbonate. They are all decomposed on heating, with evolution of oxygen; and in contact with concentrated sulphuric acid with liberation of chlorine peroxide. The most important is potassium chlorate, KClO3, which was obtained in 1786 by C. L. Berthollet by the action of chlorine on caustic potash, and this method was at first used for its manufacture. The modern process consists in the electrolysis of a hot solution of potassium chloride, or, preferably, the formation of sodium chlorate by the electrolytic method and its subsequent decomposition by potassium chloride. (See Alkali Manufacture.) Potassium chlorate crystallizes in large white tablets, of a bright lustre. It melts without decomposition, and begins to give off oxygen at about 370° C. According to F. L. Teed (Proc. Chem. Soc., 1886, p. 141), the decomposition of potassium chlorate by heat is not at all simple, the quantities of chloride and perchlorate produced depending on the temperature. A very gentle heating gives decomposition approximating to the equation of 22KClO3 = 14KClO4+8K+5O2, whilst on a more rapid heating the quantities correspond more nearly to 10KClO3 = 6KClO4+4KCl+3O2. The decomposition is rendered more easy and regular by mixing the salt with powdered manganese dioxide. The salt finds application in the preparation of oxygen, in the manufacture of matches, for pyrotechnic purposes, and in medicine. Sodium chlorate, NaClO3, is prepared by the electrolytic process; by passing chlorine into milk of lime and decomposing the calcium chlorate formed by sodium sulphate; or by the action of chlorine on sodium carbonate at low temperature (not above 35° C). It is much more soluble in water than the potassium salt.

Potassium chlorate is very valuable in medicine. Given in large doses it causes rapid and characteristic poisoning, with alterations in the blood and rapid degeneration of nearly all the internal organs; but in small doses—5 to 15 grains—it partly undergoes reduction in the blood and tissues, the chloride being formed and oxygen being supplied to the body-cells in nascent form. Its special uses are in ulceration of the mouth or tongue (ulcerative stomatitis), tonsillitis and pharyngitis. For these conditions it is administered in the form of a lozenge, but may also be swallowed in solution, as it is excreted by the saliva and so reaches the diseased surface. Its remarkable efficacy in healing ulcers of the mouth—for which it is the specific—has been ascribed to a decomposition effected by the carbonic acid which is given off from these ulcers. This releases chloric acid, which, being an extremely powerful antiseptic, kills the bacteria to which the ulcers are due.