Page:A short history of astronomy(1898).djvu/167

This page has been validated.
§§ 89, 90]
The Motion of the Planets
121

that the stationary points must exist, but shews how to calculate their exact positions.

89. So far the theory of the planets has only been sketched very roughly, in order to bring into prominence the essential differences between the coppernican and the Ptolemaic explanations of their motions, and no account has been taken of the minor irregularities for which Ptolemy devised his system of equants, eccentrics, etc., nor of the motion in latitude, i.e. to and from the ecliptic. Coppernicus, as already mentioned, rejected the equant, as being productive of an irregularity "unworthy" of the celestial bodies, and constructed for each planet a fairly complicated system of epicycles. For the motion in latitude discussed in Book VI. he supposed the orbit of each planet round the sun to be inclined to the ecliptic at a small angle, different for each planet, but found it necessary, in order that his theory should agree with observation, to introduce the wholly imaginary complication of a regular increase and decrease in the inclinations of the orbits of the planets to the ecliptic.

The actual details of the epicycles employed are of no great interest now, but it may be worth while to notice that for the motions of the moon, earth, and five other planets Coppernicus required altogether 34 circles, viz. four for the moon, three for the earth, seven for Mercury (the motion of which is peculiarly irregular), and five for each of the other planets; this number being a good deal less than that required in most versions of Ptolemy's system: Fracastor (chapter iii., § 69), for example, writing in 1538, required 79 spheres, of which six were required for the fixed stars.

90. The planetary theory of Coppernicus necessarily suffered from one of the essential defects of the system of epicycles. It is, in fact, always possible to choose a system of epicycles in such a way as to make either the direction of any body or its distance vary in any required manner, but not to satisfy both requirements at once. In the case of the motion of the moon round the earth, or of the earth round the sun, cases in which variations in distance could not readily be observed, epicycles might therefore be expected to give a satisfactory result, at any rate until methods of