This page has been proofread, but needs to be validated.

the total kinetic energy, we shall have the integrated square of each of these disturbances separately, together with the integral of terms involving their product. Now one factor of this product is constant in time and symmetrical fore and aft as regards each electron, that factor namely which arises from the uniform translation; the other factor, arising from the orbital motions of the electrons, is oscillatory and symmetrical in front and rear of each orbit: thus the integrated product is by symmetry null. This establishes the result stated, that the kinetic energy of the moving molecule is made up of an internal energy, the same up to the first order of the ratio of its velocity to that of radiation as if it were at rest, and the energy of translation of its electrons. The coefficient of half the square of the velocity of translation in the latter part is therefore, up to that order, the measure of the inertia, or mass, of the molecule thus constituted. Hence when the square of the ratio of the velocity of translation of the molecule to that of radiation is neglected, its electric inertia is equal to the sum of those of the electrons which compose it; and the fundamental chemical law of the constancy of mass throughout molecular transformations is verified for that part of the mass (whether it be all of it or not) that is of electric origin.

116. Objection has been taken to the view that the whole of the inertia of a molecule is associated with electric action, on the ground that gravitation, which has presumably no relations with such action, is proportional to mass: it has been suggested that inertia and gravity may be different results of the same cause. Now the inertia is by definition the coefficient of half the square of the velocity in the expression for the translatory energy of the molecule: in the constitution of the molecule it is admitted, from electrolytic considerations, that electric forces or agencies prevail enormously over gravitative ones: it seems fair to conclude that of its energy the electric part prevails equally over the gravitative part: but this is simply asserting that inertia is mainly of electric, or rather of aethereal, origin. Moreover the increase of kinetic electric energy of an electron arising from its motion with velocity v depends on , on the