This page has been validated.
Matter moving through the Æther.
323

the quarter-wave plate this match was destroyed, but by rotating the compensator this could again be obtained. In this way the retardation of the compensator could be at once determined in terms of that of the quarter-wave plate. Thus, a rotation of 5° of the compensator corresponds to 16' of that of the quarter-wave plate. It was found that the rotation of the compensator was proportional to that of the quarter-wave plate approximately for these small angles.

A further comparison was made with the vertical crown-glass strip. This was 13 mms. wide and 2 mms. thick. The quarter-wave plate was removed and this strip inserted instead and a setting made with the compensator. On adding 200 gms. a match was obtained on rotating the compensator through 2°.5. From this can be calculated the relative retardation produced in glass per unit weight and unit width. Another comparison was made with white light from the acetylene flame direct by removing both strip and compensator and inserting the micrometer and horizontal glass strip in addition to the vertical glass strip. When the clamp for producing flexure was screwed up a horizontal black band appeared between the two cross-wires. For one flexure, where the band was quite distinct, 500 gms. on the vertical glass strip gave a reading of 36 on the micrometer-screw and 200 gms. gave 14, thus showing the proportionality. A movement of the cross-wires, just sufficient to observe a shift, gave a reading of 12, which was the sensibility of the system for that flexure. On releasing the screw until the flexure was so far reduced that the band was barely visible, 200 gms. gave a shift of 23 divisions and 100 gms. gave 11 divisions as near as could be observed, and this was the smallest weight which could be observed to produce any double refraction. A direct shift of the cross-wires gave 13 divisions as the sensibility. Using direct white light and the sensitive strip and compensator 0°.1 rotation of the latter could be detected, thus giving it a sensibility of ×0.1=8 gms., or 12.5 times that of the band under similar conditions of light intensity and adjustment.[1] With greater intensity and more careful adjustment higher sensibility could be obtained by both methods. In fact, Rayleigh, using lime-light and a black band, has been able to detect a weight of 25 gms. on a vertical glass strip 15 mms. wide, or a sensibility over four times as great as that obtained above with the acetylene flame and a black band.

  1. A comparison with a Bravais sensitive-tint biplate gave 200 times the sensibility for the sensitive strip.