This page has been validated.
THE ETHER AND MOVING MATTER
109

. This hypothesis satisfies the phenomena of aberration and the uniformity of the laws of reflection and refraction of a body, whether in motion or at rest, and, as already mentioned, does not affect interference, as Stokes showed, so far as the earth's motion is concerned. That the ether apparently is carried along within moving matter not with its full velocity, but diminished to the extent indicated by Fresnel's coefficient of convection, Fizeau demonstrated in his famous interference experiment with streaming water, repeated later with greater refinement by Michelson and Morley. The significance of this experiment in its bearings on the question of the drift of the ether has perhaps been overestimated. In fact, neglecting the square of the aberration, it is exactly what we should expect from the dynamical reaction of a moving material system on a periodic disturbance, propagated through it without reference to the motion of translation of the interpenetrating medium, but simply to the frequency of the vibration impressed upon the system by this ether. Thus if we transform the ordinary differential equations of motion of the material system from fixed to moving axes, the form of the solution contains Fresnel's convection coefficient as a factor exactly, neglecting quantities of the second order of the aberration. This experiment cannot then be adduced as a positive result in favor of a quiescent ether. On account of its physical consequences, however, it should be extended to the case of gases and to absorbing substances, using light corresponding to the natural frequences of the latter if possible. Although negative results have heretofore been obtained with a gas, yet, with high pressures and greater dimensions and velocities, the test is within present experimental limitations. Results with solid bodies are still lacking, but a preliminary examination of the problem encourages us to expect successful results, at least with double-refracting substances. Reasoning in a similar manner as on the dynamical reaction of a moving system, we should look for the acceleration of a circularly polarized ray propagated coaxially within a rapidly rotating medium. This may possibly be brought within experimental limits. Again we have the important experiment of Lodge on the effect of moving masses upon the motion of the ether near them. This experiment, like that of the preceding one of Fizeau, is a first order test, i. e. the effect to be observed would arise from a change in the first power of the aberration factor. Two interfering beams were sent around several times in opposite directions between two rotating steel disks, and the effect on the bands noted from rest to motion or reversal. With a linear velocity not far from one twohundredth that of the earth's orbital motion, and a distance of some ten meters or more, no influence on the interfering rays could be detected, thus making the effect, calculated from the aberration factor if the ether were carried around between the disks, something