This page has been validated.
764
BUILDING
  

the ultimate abutments of the bridge, without which the structure would not stand. This illustration is not intended to apply to the older bridges with widely distended masses, which render each pier sufficient to abut the arches springing from it, but tend, in providing for a way over the river, to choke up the way by the river itself, or to compel the river either to throw down the structure or else to destroy its own banks.

Some soils are liable to change in form, expanding and contracting under meteorological influences; such are clays which swell when wetted and shrink when dried. Concrete foundations are commonly interposed upon such soils to protect the building from derangement from this Foundations.cause; or walls of the cheaper material, concrete, instead of the more expensive brick or stone structure, are brought up from a level sufficiently below the ordinary surface of the ground. When concrete is used to obviate the tendency of the soil to yield to pressure, expanse or extent of base is required, and the concrete being widely spread should therefore be deep or thick as a layer, only with reference to its own power of transmitting to the ground the weight of the wall to be built upon it, without breaking across or being crushed. But when concrete is used as a substitute for a wall, in carrying a wall down to a low level, it is in fact a wall in itself, wide only in proportion to its comparative weakness in the absence of manipulated bond in its construction, and encased by the soil within which it is placed. When a concrete wall is used in place of brick the London Building Act requires an extra thickness of one-third; on the question of reinforced concrete no regulations as to thickness have at present been made.

The foundation of a building of ordinary weight is for the most part sufficiently provided for by applying what are technically termed “footings” to the walls. The reason for a footing is, that the wall obtains thereby a bearing upon a breadth of ground so much greater than its Footings
to walls.
own width or thickness above the footing as to compensate for the difference between the power of resisting pressure of the wall, and of the ground or ultimate foundation upon which the wall is to rest. It will be clear from this that if a building is to be erected upon rock as hard as the main constituent of the walls theoretically no expanded footings will be necessary; if upon chalk, upon strong or upon weak gravel, upon sand or upon clay, the footing must be expanded with reference to the power of resistance of the structure to be used as a foundation; whilst in or upon made ground or other loose and badly combined or imperfectly resisting soil, a solid platform bearing evenly over the ground, and wide enough not to sink into it, becomes necessary under the constructed footing. For this purpose the easiest, the most familiar, and for most purposes the most effectual and durable is a layer of concrete.

The English government, when it has legislated upon building matters, has generally confined itself to making provision that the enclosing walls of buildings should be formed of incombustible materials. In provisions regarding the least thicknesses of such walls, these were generally determined with reference to the height and length of the building.

In the general and usual practice of developing land at the present day, the owner or freeholder of the land first consults an architect and states his intentions of building, the size of what he requires, what it is to be used for, if for trade how many hands he intends to employ, and the Procedure for an intended building.sub-buildings and departments, &c., that will be wanted. The architect gathers as much information as he can as to his client’s requirements, and from this information prepares his sketches. This first step is usually done with rough sketches or outlines only, and when approved by the client as regards the planning and situation of rooms, &c., the architect prepares the plans, elevations, and sections on the lines of the approved rough sketches; at the same time he strictly observes the building acts, and makes every portion of the building comply with these acts as regards the thickness of walls, open spaces, light and air, distances from surrounding property, frontage lines, and a host of other points too numerous to mention, as far as he can interpret the meaning of the enactments. (The London and New York Building Acts are very extensive, with numerous amendments made as occasion requires.) An architect, whilst preparing the working drawings from the rough approved sketches, and endeavouring to conform with the Building Act requirements, often finds after consultation with the district surveyor, or the London County Council, or other local authorities, that the plans have to be altered; and when so altered the client may disapprove of them, and thus delay often occurs in settling them.

Another important point is that after the architect has obtained the consent of the building authorities, and also the approval of the client, then he may have to fight the adjoining owners with regard to ancient lights, or air space, or party walls. In the city of London these last difficulties often mean the suspension of the work for a long time, and a great loss to the client.

If the site is a large one, or the nature of the soil uncertain, trial holes should be sunk directly the sketch plans are approved. (See Foundations.)

Where the property is leasehold there are always at this stage negotiations as to obtaining the approval of the senior lessors and the freeholders; these having been obtained, the architect is then free to serve the various notices that may be required re party walls, &c.

The contract plans should be very carefully prepared, and sections, plans and elevations of all parts of the buildings and the levels from a datum line be given. In addition to the general set of drawings, larger scale details of the principal portions of the building should be given.

If there are any existing buildings on the site these should be carefully surveyed and accurate detail plans be made for reference; this is especially necessary with regard to easements and rights of adjoining owners. Also in the preparation of the site plan the various levels of the ground should be shown.

The plans having been approved by all parties concerned, the next operation is the preparation of the specification. This is a document which describes the materials to be used in the building, states how they are to be mixed, and how the various works are to be executed, and specifies every trade, and every portion of work in the building. The specification is necessary to enable the builder to erect the structure according to the architect’s requirements, and is written by the architect; usually two copies of this document are made, one for the builder, the other for the architect, and the latter is signed as the contract copy in the same manner as the drawings.

From the specification and drawings usually an approximate estimate of the cost of the proposed building is prepared by the architect, and the most general method adopted is to cube the building by a multiplication of the length, breadth and height of the building, and to multiply the product or cubic contents by a price ranging from fivepence to three shillings per cubic foot. In the case of churches, chapels and schools, the cost may be roughly computed by taking the number of seats at a price per seat. In the case of churches and chapels, taking a minimum area of 8 ft. each, the cost varies from £10 upwards, the difference being due to the amount of architectural embellishment or the addition of a tower. Schools may be estimated as averaging £9 per scholar; we find that, taking schools of various sizes erected by the late London School Board, their cost varied from £7:12:4 to £10:1:10 per scholar. Hospitals vary from £100 per bed upwards, the lowest cost being taken from a cottage hospital type; while in the case of St Thomas’s hospital, London, the cost per bed, including the proportion of the administrative block, was £650, and without this portion the wards alone cost £250. The Herbert hospital at Woolwich cost only £320 per bed.

The bills of quantities are prepared by the quantity surveyor, and are generally made to form part of the contract, and so mentioned in “the contract.” The work of the quantity surveyor is to measure from the drawings the whole of the materials required for the structure, and state the amounts or quantities of the respective materials in the form of a bill usually made out on foolscap paper specially ruled, so that