This page has been proofread, but needs to be validated.
  
DIAGRAM
147

dimensions. In such systems of diagrams we have to indicate that a point in one diagram corresponds to a point in another diagram. This is generally done by marking the corresponding points in the different diagrams with the same letter. If the diagrams are drawn on the same piece of paper we may indicate corresponding points by drawing a line from one to the other, taking care that this line of correspondence is so drawn that it cannot be mistaken for a real line in either diagram. (See Geometry: Descriptive.)

In the stereoscope the two diagrams, by the combined use of which the form of bodies in three dimensions is recognized, are projections of the bodies taken from two points so near each other that, by viewing the two diagrams simultaneously, one with each eye, we identify the corresponding points intuitively. The method in which we simultaneously contemplate two figures, and recognize a correspondence between certain points in the one figure and certain points in the other, is one of the most powerful and fertile methods hitherto known in science. Thus in pure geometry the theories of similar, reciprocal and inverse figures have led to many extensions of the science. It is sometimes spoken of as the method or principle of Duality. Geometry Projective.)

Diagrams in Mechanics

The study of the motion of a material system is much assisted by the use of a series of diagrams representing the configuration, displacement and acceleration of the parts of the system.

Diagram of Configuration.—In considering a material system it is often convenient to suppose that we have a record of its position at any given instant in the form of a diagram of configuration. The position of any particle of the system is defined by drawing a straight line or vector from the origin, or point of reference, to the given particle. The position of the particle with respect to the origin is determined by the magnitude and direction of this vector. If in the diagram we draw from the origin (which need not be the same point of space as the origin for the material system) a vector equal and parallel to the vector which determines the position of the particle, the end of this vector will indicate the position of the particle in the diagram of configuration. If this is done for all the particles we shall have a system of points in the diagram of configuration, each of which corresponds to a particle of the material system, and the relative positions of any pair of these points will be the same as the relative positions of the material particles which correspond to them.

We have hitherto spoken of two origins or points from which the vectors are supposed to be drawn—one for the material system, the other for the diagram. These points, however, and the vectors drawn from them, may now be omitted, so that we have on the one hand the material system and on the other a set of points, each point corresponding to a particle of the system, and the whole representing the configuration of the system at a given instant.

This is called a diagram of configuration.

Diagram of Displacement.—Let us next consider two diagrams of configuration of the same system, corresponding to two different instants. We call the first the initial configuration and the second the final configuration, and the passage from the one configuration to the other we call the displacement of the system. We do not at present consider the length of time during which the displacement was effected, nor the intermediate stages through which it passed, but only the final result—a change of configuration. To study this change we construct a diagram of displacement.

Let A, B, C be the points in the initial diagram of configuration, and A′, B′, C′ be the corresponding points in the final diagram of configuration. From o, the origin of the diagram of displacement, draw a vector oa equal and parallel to AA′, ob equal and parallel to BB′, oc to CC′, and so on. The points a, b, c, &c., will be such that the vector ab indicates the displacement of B relative to A, and so on. The diagram containing the points a, b, c, &c., is therefore called the diagram of displacement.

In constructing the diagram of displacement we have hitherto assumed that we know the absolute displacements of the points of the system. For we are required to draw a line equal and parallel to AA′, which we cannot do unless we know the absolute final position of A, with respect to its initial position. In this diagram of displacement there is therefore, besides the points a, b, c, &c., an origin, o, which represents a point absolutely fixed in space. This is necessary because the two configurations do not exist at the same time; and therefore to express their relative position we require to know a point which remains the same at the beginning and end of the time.

But we may construct the diagram in another way which does not assume a knowledge of absolute displacement or of a point fixed in space. Assuming any point and calling it a, draw ak parallel and equal to BA in the initial configuration, and from k draw kb parallel and equal to A′B′ in the final configuration. It is easy to see that the position of the point b relative to a will be the same by this construction as by the former construction, only we must observe that in this second construction we use only vectors such as AB, A′B′, which represent the relative position of points both of which exist simultaneously, instead of vectors such as AA′, BB′, which express the position of a point at one instant relative to its position at a former instant, and which therefore cannot be determined by observation, because the two ends of the vector do not exist simultaneously.

It appears therefore that the diagram of displacements, when drawn by the first construction, includes an origin o, which indicates that we have assumed a knowledge of absolute displacements. But no such point occurs in the second construction, because we use such vectors only as we can actually observe. Hence the diagram of displacements without an origin represents neither more nor less than all we can ever know about the displacement of the material system.

Diagram of Velocity.—If the relative velocities of the points of the system are constant, then the diagram of displacement corresponding to an interval of a unit of time between the initial and the final configuration is called a diagram of relative velocity. If the relative velocities are not constant, we suppose another system in which the velocities are equal to the velocities of the given system at the given instant and continue constant for a unit of time. The diagram of displacements for this imaginary system is the required diagram of relative velocities of the actual system at the given instant. It is easy to see that the diagram gives the velocity of any one point relative to any other, but cannot give the absolute velocity of any of them.

Diagram of Acceleration.—By the same process by which we formed the diagram of displacements from the two diagrams of initial and final configuration, we may form a diagram of changes of relative velocity from the two diagrams of initial and final velocities. This diagram may be called that of total accelerations in a finite interval of time. And by the same process by which we deduced the diagram of velocities from that of displacements we may deduce the diagram of rates of acceleration from that of total acceleration.

We have mentioned this system of diagrams in elementary kinematics because they are found to be of use especially when we have to deal with material systems containing a great number of parts, as in the kinetic theory of gases. The diagram of configuration then appears as a region of space swarming with points representing molecules, and the only way in which we can investigate it is by considering the number of such points in unit of volume in different parts of that region, and calling this the density of the gas.

In like manner the diagram of velocities appears as a region containing points equal in number but distributed in a different manner, and the number of points in any given portion of the region expresses the number of molecules whose velocities lie within given limits. We may speak of this as the velocity-density.

Diagrams of Stress.—Graphical methods are peculiarly applicable to statical questions, because the state of the system is constant, so that we do not need to construct a series of diagrams corresponding to the successive states of the system. The most useful of these applications, collectively termed Graphic Statics, relates to the equilibrium of plane framed structures familiarly represented in bridges and roof-trusses. Two diagrams are used, one called the diagram of the frame and the other called the diagram of stress. The structure itself consists of a number of separable pieces or links jointed together at their extremities. In practice these joints have friction, or may be made purposely stiff, so that the force acting at the extremity of a piece may not pass exactly through the axis of the joint; but as it is unsafe to make the stability of the structure depend in any degree upon the stiffness of joints, we assume in our calculations that all the joints are perfectly smooth, and therefore that the force acting on the end of any link passes through the axis of the joint.

The axes of the joints of the structure are represented by points in the diagram of the frame. The link which connects two joints in the actual structure may be of any shape, but in the diagram of the frame it is represented by a straight line joining the points representing the two joints. If no force acts on the link except the two forces acting through the centres of the joints, these two forces must be equal and opposite, and their direction must coincide with the straight line joining the centres of the joints. If the force acting on either extremity of the link is directed towards the other extremity, the stress on the link is called pressure and the link is called a "strut." If it is directed away from the other extremity, the stress on the link is called tension and the link is called a "tie." In this case, therefore, the only stress acting in a link is a pressure or a tension in the direction of the straight line which represents it in the diagram of the frame, and all that we have to do is to find the magnitude of this stress. In the actual structure gravity acts on every part of the link, but in the diagram we substitute for the actual weight of the different parts of the link two weights which have the same resultant acting at the extremities of the link.

We may now treat the diagram of the frame as composed of links without weight, but loaded at each joint with a weight made up of portions of the weights of all the links which meet in that joint. If any link has more than two joints we may substitute for it in the diagram an imaginary stiff frame, consisting of links, each of which has only two joints. The diagram of the frame is now reduced to a system of points, certain pairs of which are joined by straight lines, and each point is in general acted on by a weight or other force acting between it and some point external to the system. To complete