This page has been proofread, but needs to be validated.
  
FURNACE
359


collect at the lowest point of the hearth, whence they are removed by opening a hole pierced through the front wall at the bottom. The active portion of such a furnace is essentially that above the blast-pipe, the function of the lower part being merely the collection of the reduced metal; the fire may therefore be regarded as burning in an unconfined space, with the waste of a large amount of its heating power. By continuing the walls of the hearth above the tuyere, into a shaft or stack either of the same or some other section, we obtain a furnace of increased capacity, but with no greater power of consuming fuel, in which the material to be treated can be heated up gradually by loading it into the stack, alternately with layers of fuel, the charge descending regularly to the point of combustion, and absorbing a proportion of the heat of the flame that went to waste in the open fire. This principle is capable of very wide extension, the blast furnace being mainly limited in height by the strength the column of materials or “burden” has to resist crushing, under the weight due to the head adopted, and the power of the blowing engine to supply blast of sufficient density to overcome the resistance of the closely packed materials to the free passage of the spent gases. The consuming power of the furnace or the rate at which it can burn the fuel supplied is measured by the number of tuyeres and their section.

The development of blast furnaces is practically the development of iron-smelting. The profile has been very much varied at different times. The earliest examples were square or rectangular in horizontal section, but the general tendency of modern practice is to substitute round sections, their construction being facilitated by the use of specially moulded bricks which have entirely superseded the sandstone blocks formerly used. The vertical section, on the other hand, is subject to considerable variation according to the work to which the furnace is applied. Where the operation is simply one of fusion, as in the iron-founder’s cupola, in which there is no very great change in volume in the materials on their descent to the tuyeres, the stack is nearly or quite straight-sided; but when, as is the case with the smelting of iron ores with limestone flux, a large proportion of volatile matter has to be removed in the process, a wall of varying inclination is used, so that the body of the furnace is formed of two dissimilar truncated cones, joined by their bases, the lower one passing downwards into a short, nearly cylindrical, position. For further consideration of this subject see Iron and Steel.

Hearth furnaces are employed in certain metallurgical operations, e.g. in the air-reduction process for smelting lead ores. The principle is essentially that of the Catalan forge. Such furnaces are very wasteful, and have little to recommend them (see Schnabel, Metallurgy, 1905, vol. i. p. 409).

Reverberatory Furnaces.—Blast furnaces are, from the intimate contact between the burden to be smelted and the fuel, the least wasteful of heat; but their use supposes the possibility of obtaining fuel of good quality and free from sulphur or other substances likely to deteriorate the metal produced. In all cases, therefore, where it is desired to do the work out of contact with the solid fuel, the operation of burning or heat-producing must be performed in a special fire-place or combustion chamber, the body of flame and heated gas being afterwards made to act upon the surface of the material exposed in a broad thin layer in the working bed or laboratory of the furnace by reverberation from the low vaulted roof covering the bed. Such furnaces are known by the general name of reverberatory or reverbatory furnaces, also as air or wind furnaces, to distinguish them from those worked with compressed air or blast.

Originally the term cupola was used for the reverberatory furnace, but in the course of time it has changed its meaning, and is now given to a small blast furnace such as that used by iron-founders—reverberatory smelting furnaces in the same trade being called air furnaces.

Fig. 2.—Longitudinal section of Reverberatory Furnace.
Fig. 3.—Reverberatory Furnace (horizontal section).
Fig. 4.—Reverberatory Furnace (elevation at flue end).

Figs. 2, 3 and 4 represent a reverberatory furnace such as is used for the fusion of copper ores for regulus, and may be taken as generally representing its class. The fire-place A is divided from the working bed B by a low wall C known as the fire bridge, and at the opposite end there is sometimes, though not invariably, a second bridge of less height called the flue bridge D. A short diagonal flue or up-take E conveys the current of spent flame to the chimney F, which is of square section, diminishing by steps at two or three different heights, and provided at the top with a covering plate or damper G, which may be raised or lowered by a chain reaching to the ground, and serves for regulating the speed of the exhaust gases, and thereby the draught of air through the fire. Where several furnaces are connected with the same chimney stack, the damper takes the form of a sliding plate in the mouth of the connecting flue, so that the draught in one may be modified without affecting the others. The fire bridge is partially protected against the intense