This page has been proofread, but needs to be validated.
HEATING
161

Heating by warmed air, one of the oldest methods in use, has been much improved by attention to the construction of the apparatus, and if properly installed will give as good effects as it is possible to obtain. The system is especially suitable for churches, assembly halls and Warm air. large rooms. A stove of special design is placed in a chamber in the basement or cellar, and cold fresh air is passed through it, and led by means of flues to the various apartments for distribution by means of easily regulated inlet valves. To prevent the atmosphere from becoming unduly dry a pan of water is fitted to the stove; this serves to moisten the air before it passes into the distributing flues. If each distributing flue is connected by means of a mixing valve with a cold-air flue, the warmth of the incoming air can be regulated to a nicety (see Ventilation).

Fig. 3.

There are many different systems of heating by hot water circulating in pipes. The oldest and best known is the “two pipe” system, others being the “one pipe” or “simple circuit,” and the “drop” or “overhead.” The high pressure system is of later invention, having been Low pressure hot water. first put to practical use by A. M. Perkins in 1845. All these methods warm chiefly by means of convected heat, the amount of true radiation from the pipes being small. The manner in which the circulation of hot water takes place in the tubes is as follows. Fire heats the water in a boiler from the top of which a “flow” pipe communicates with the rooms to be warmed (fig. 3). As the water is heated it becomes lighter, rises to the top of the boiler, and passes along the flow pipe. It is followed by more and more hot water, and so travels along the flow pipe, which is rising all the time, to the farthest point of the circuit, by which time it has in all probability cooled considerably. From this point the “return” pipe drops, usually at the same rate as the flow pipe rises; and in due course the water reaches its starting point, the boiler, and is again heated and again circulated through the system. The connexion of the return pipe is made with the lower part of the boiler. Branches may be made from the main pipes by means of smaller pipes arranged in the same manner as the mains, the branch flow pipe being connected with the main flow pipe and returning into the main return. To obtain a larger heating surface than a pipe affords, radiators are connected with the pipes where desired, and the water passing through them warms the surrounding air.

The “one pipe” system (fig. 4) acts on precisely the same principle, but in place of two pipes being placed in adjacent positions one large main makes a complete circuit of the area to be warmed, starting from and returning to the boiler, and from this main flow and return branches are taken and connected with radiators and other heating appliances.

In the “drop” or “overhead” system (fig. 5) a rising main is taken directly from the boiler to the topmost floor of the building, and from this branches are dropped to the lower floors, and connected by means of smaller branches to radiators or coils. The vertical branches descend to the basement and generally merge in a single return pipe which is connected to the lower part of the boiler.

Fig. 4.
Fig. 5.

The rate of circulation in the ordinary low pressure hot-water system may be considerably accelerated by means of steam injections. The water after being heated passes into a circulating tank into which steam is introduced; this, mixing with the hot water, gives it additional motive power, resulting in a faster circulation. This steam condensing adds to the water in the pipe and naturally causes an overflow, which is led back to the boiler and re-used. In districts where the water is hard, this arrangement considerably lengthens the life of the boiler, as the same water is used over and over again, and no fresh deposit of fur occurs. Owing to the very rapid movement and the consequent increased rate of transmission of heat, the pipes and radiators may be reduced in size, in many circumstances a very desirable thing to achieve. With this system the temperature