This page has been proofread, but needs to be validated.
802
IRON AND STEEL


(2) malleable, i.e. capable of being “wrought.” This name did not please those interested in the new product, because existing wrought iron was a low-priced material. Instead of inventing a wholly new name for the wholly new product, they appropriated the name “steel,” because this was associated in the public mind with superiority. This they did with the excuse that the new product resembled one class of steel—cast steel—in being free from slag; and, after a period of protest, all acquiesced in calling it “steel,” which is now its firmly established name. The old varieties of wrought iron, steel and cast iron preserve their old names; the new class is called steel by main force. As a result, certain varieties, such as blister steel, are called “steel” solely because they have the hardening power, and others, such as low-carbon steel, solely because they are free from slag. But the former lack the essential quality, slaglessness, which makes the latter steel, and the latter lack the essential quality, the hardening power, which makes the former steel. “Steel” has come gradually to stand rather for excellence than for any specific quality. These anomalies, however confusing to the general reader, in fact cause no appreciable trouble to important makers or users of iron and steel, beyond forming an occasional side-issue in litigation.

3. Definitions.Wrought iron is slag-bearing malleable iron, containing so little carbon (0.30% or less), or its equivalent, that it does not harden greatly when cooled suddenly.

Steel is iron which is malleable at least in some one range of temperature, and also is either (a) cast into an initially malleable mass, or (b) is capable of hardening greatly by sudden cooling, or (c) is both so cast and so capable of hardening. (Tungsten steel and certain classes of manganese steel are malleable only when red-hot.) Normal or carbon steel contains between 0.30 and 2.20% of carbon, enough to make it harden greatly when cooled suddenly, but not enough to prevent it from being usefully malleable when hot.

Cast iron is, generically, iron containing so much carbon (2.20% or more) or its equivalent that it is not usefully malleable at any temperature. Specifically, it is cast iron in the form of castings other than pigs, or remelted cast iron suitable for such castings, as distinguished from pig iron, i.e. the molten cast iron as it issues from the blast furnace, or the pigs into which it is cast.

Malleable cast iron is iron which has been cast in the condition of cast iron, and made malleable by subsequent treatment without fusion.

Alloy steels and cast irons are those which owe their properties chiefly to the presence of one or more elements other than carbon.

Ingot iron is slagless steel with less than 0.30% of carbon.

Ingot steel is slagless steel containing more than 0.30% of carbon.

Weld steel is slag-bearing iron malleable at least at some one temperature, and containing more than 0.30% of carbon.

4. Historical Sketch.—The iron oxide of which the ores of iron consist would be so easily deoxidized and thus brought to the metallic state by the carbon, i.e. by the glowing coals of any primeval savage’s wood fire, and the resulting metallic iron would then differ so strikingly from any object which he had previously seen, that its very early use by our race is only natural. The first observing savage who noticed it among his ashes might easily infer that it resulted from the action of burning wood on certain extremely heavy stones. He could pound it out into many useful shapes. The natural steps first of making it intentionally by putting such stones into his fire, and next of improving his fire by putting it and these stones into a cavity on the weather side of some bank with an opening towards the prevalent wind, would give a simple forge, differing only in size, in lacking forced blast, and in details of construction, from the Catalan forges and bloomaries of to-day. Moreover, the coals which deoxidized the iron would inevitably carburize some lumps of it, here so far as to turn it into the brittle and relatively useless cast iron, there only far enough to convert it into steel, strong and very useful even in its unhardened state. Thus it is almost certain that much of the earliest iron was in fact steel. How soon after man’s discovery, that he could beat iron and steel out while cold into useful shapes, he learned to forge it while hot is hard to conjecture. The pretty elaborate appliances, tongs or their equivalent, which would be needed to enable him to hold it conveniently while hot, could hardly have been devised till a very much later period; but then he may have been content to forge it inconveniently, because the great ease with which it mashes out when hot, perhaps pushed with a stout stick from the fire to a neighbouring flat stone, would compensate for much inconvenience. However this may be, very soon after man began to practise hot-forging he would inevitably learn that sudden cooling, by quenching in water, made a large proportion of his metal, his steel, extremely hard and brittle, because he would certainly try by this very quenching to avoid the inconvenience of having the hot metal about. But the invaluable and rather delicate art of tempering the hardened steel by a very careful and gentle reheating, which removes its extreme brittleness though leaving most of its precious hardness, needs such skilful handling that it can hardly have become known until very long after the art of hot-forging.

The oxide ores of copper would be deoxidized by the savage’s wood fire even more easily than those of iron, and the resulting copper would be recognized more easily than iron, because it would be likely to melt and run together into a mass conspicuous by its bright colour and its very great malleableness. From this we may infer that copper and iron probably came into use at about the same stage in man’s development, copper before iron in regions which had oxidized copper ores, whether they also had iron ores or not, iron before copper in places where there were pure and easily reduced ores of iron but none of copper. Moreover, the use of each metal must have originated in many different places independently. Even to-day isolated peoples are found with their own primitive iron-making, but ignorant of the use of copper.

If iron thus preceded copper in many places, still more must it have preceded bronze, an alloy of copper and tin much less likely than either iron or copper to be made unintentionally. Indeed, though iron ores abound in many places which have neither copper nor tin, yet there are but few places which have both copper and tin. It is not improbable that, once bronze became known, it might replace iron in a measure, perhaps even in a very large measure, because it is so fusible that it can be cast directly and easily into many useful shapes. It seems to be much more prominent than iron in the Homeric poems; but they tell us only of one region at one age. Even if a nation here or there should give up the use of iron completely, that all should is neither probable nor shown by the evidence. The absence of iron and the abundance of bronze in the relics of a prehistoric people is a piece of evidence to be accepted with caution, because the great defect of iron, its proneness to rust, would often lead to its complete disappearance, or conversion into an unrecognizable mass, even though tools of bronze originally laid down beside it might remain but little corroded. That the ancients should have discovered an art of hardening bronze is grossly improbable, first because it is not to be hardened by any simple process like the hardening of steel, and second because, if they had, then a large proportion of the ancient bronze tools now known ought to be hard, which is not the case.

Because iron would be so easily made by prehistoric and even by primeval man, and would be so useful to him, we are hardly surprised to read in Genesis that Tubal Cain, the sixth in descent from Adam, discovered it; that the Assyrians had knives and saws which, to be effective, must have been of hardened steel, i.e. of iron which had absorbed some carbon from the coals with which it had been made, and had been quenched in water from a red heat; that an iron tool has been found embedded in the ancient pyramid of Kephron (probably as early as 3500 B.C.); that iron metallurgy had advanced at the time of Tethmosis (Thothmes) III. (about 1500 B.C.) so far that bellows were used for forcing the forge fire; that in Homer’s time (not later than the 9th century B.C.) the delicate art of hardening and tempering steel was so familiar that the poet used it for a simile, likening