This page has been validated.
850
IRRIGATION

necessity of laying under-water foundations. The length of the dam is about 6400 ft.—nearly 11/4 m. The greatest head of water The
Assuan
Dam.
in it is 65 ft. It is pierced by 140 under-sluices of 150 sq. ft. each, and by 40 upper-sluices, each of 75 sq. ft. These, when fully open, are capable of discharging the ordinary maximum Nile flood of 350,000 cub. ft. per second, with a velocity of 15.6 ft. per second and a head of 6.6 ft. The top width of the dam is 23 ft., the bottom width at the deepest part about 82 ft. On the left flank of the dam there is a canal, provided with four locks, each 262 by 31 ft. in area, so that navigation is possible at all seasons. The storage capacity of the reservoir is about 3,750,000 millions of cub. ft., which creates a lake extending up the Nile Valley for about 200 m. The reservoir is filled yearly by March; after that the volume reaching the reservoir from the south is passed on through the sluices. In May, or earlier when the river is late in rising, when the demand for water increases, first the upper and then the under sluices are gradually opened, so as to increase the river supply, until July, when all the gates are open, to allow of the free passage of the flood. On the 10th of December 1902 this magnificent work was completed. The engineer who designed it was Sir W. Willcocks. The contractors were Messrs John Aird & Co., the contract price being £2,000,000. The financial treaties in which the Egyptian government were bound up prevented their ever paying so large a sum as this within five years; but a company was formed in London to advance periodically the sum due to the contractors, on receipt from the government of Egypt of promissory notes to pay sixty half-yearly instalments of £78,613, beginning on the 1st of July 1903. Protective works downstream of the dam were completed in 1906 at a cost of about £E304,000. It had been at first intended to raise the dam to a height which would have involved the submergence, for some months of every year, of the Philae temples, situated on an island just upstream of the dam. Had the natives of Egypt been asked to choose between the preservation of Ptolemy’s famed temple and the benefit to be derived from a considerable additional depth of water storage, there can be no question that they would have preferred the latter; but they were not consulted, and the classical sentiment and artistic beauty of the place, skilfully pleaded by archaeologists and artists, prevailed. In 1907, however, it was decided to carry out the plan as originally proposed and raise the dam 26 ft. higher. This would increase the storage capacity 21/2 times, or to about 9,375,000 millions of cubic feet.

There is no middle course of farming in Egypt between irrigation and desert. No assessment can be levied on lands which have not been watered, and the law of Egypt requires that in order to render land liable to taxation the water during the Nile flood must have flowed naturally over it. It is not enough that it should be pumped on to the land at the expense of the landowner. The tax usually levied is from £1 to £2 per acre.

See Sir W. Willcocks, Egyptian Irrigation (2nd ed., 1899); Sir C. C. Scott-Moncrieff, Lectures on Irrigation in Egypt. Professional Papers on the Corps of Royal Engineers, vol. xix. (London, 1893); Sir W. Garstin, Report upon the Basin of the Upper Nile. Egypt No. 2 (1904).

V. India.—Allusion has already been made to the irrigation of India. The year 1878, which saw the end of a most disastrous famine, may be considered as the commencement of a new era as regards irrigation. It had at last been recognized that such famines must be expected to occur at no very long intervals of time, and that the cost of relief operations must not be met by increasing the permanent debt on the country, but by the creation of a famine relief and a famine insurance fund. For this purpose it was fixed that there should be an annual provision of Rx. 1,500,000, to be spent on: (1) relief, (2) protective works, (3) reduction of debt. Among protective works the first place was given to works of irrigation. These works were divided into three classes: (i.) productive works; (ii.) protective works; (iii.) minor works.

Productive works, as their name implies, are such as may reasonably be expected to be remunerative, and they include all the larger irrigation systems. Their capital cost is provided from loan funds, and not from the relief funds mentioned above. In the seventeen years ending 1896–1897 the capital expenditure on such works was Rx. 10,954,948, including a sum of Rx. 1,742,246 paid to the Madras Irrigation Company as the price of the Kurnool-Cuddapah canal, a work which can never be financially productive, but which nevertheless did good service in the famine of 1896–1897 by irrigating 87,226 acres. In the famine year 1877–1878 the area irrigated by productive canals was 5,171,497 acres. In the famine year 1896–1897 the area was 9,571,779 acres, including an area of 123,087 acres irrigated on the Swat river canal in the Punjab. The revenue of the year 1879–1880 was nearly 6% on the capital outlay. In 1897–1898 it was 71/2%. In the same seventeen years Rx. 2,099,253 were spent on the construction of protective irrigation works, not expected to be directly remunerative, but of great value during famine years. On four works of this class were spent Rx. 1,649,823, which in 1896–1897 irrigated 200,733 acres, a valuable return then, although in an ordinary year their gross revenue does not cover their working expenses. Minor works may be divided into those for which capital accounts have been kept and those where they have not. In the seventeen years ending 1896–1897, Rx. 827,214 were spent on the former, and during that year they yielded a return of 9.13%. In the same year the irrigation effected by minor works of all sorts showed the large area of 7,442,990 acres. Such are the general statistics of outlay, revenue and irrigated area up to the end of 1896–1897. The government might well be congratulated on having through artificial means ensured in that year of widespread drought and famine the cultivation of 27,326 sq. m., a large tract even in so large a country as India. And progress has been steadily made in subsequent years.

Some description will now be given of the chief of these irrigation works. Beginning with the Punjab, the province in which most progress has been made, the great Sutlej canal, which irrigates the country to the left of that river, was opened in 1882, and the Western Jumna canal (perhaps the oldest in India) was extended into the dry Hissar and Sirsa districts, and generally improved so as to increase by nearly 50% its area of irrigation between 1878 and 1897. Perhaps this is as much as can well be done with the water at command for the country between the Sutlej and the Jumna, and it is enough to secure it for ever from famine. The Bari Doab canal, which irrigates the Gurdaspur, Amritsar and Lahore districts, has been enlarged and extended so as to double its irrigation since it was projected in 1877–1878. The Chenab canal, the largest in India and the most profitable, was only begun in 1889. It was designed to command an area of about 21/2 million acres, and to irrigate annually rather less than half that area. This canal flows through land that in 1889 was practically desert. From the first arrangements were made for bringing colonists in from the more congested parts of India. The colonization began in 1892. Nine years later this canal watered 1,830,525 acres. The population of the immigrant colony was 792,666, consisting mainly of thriving and prosperous peasants with occupancy rights in holdings of about 28 acres each. The direct revenue of this canal in 1906 was 26% on the capital outlay. The Jhelum canal was opened on the 30th of October, 1901. It is a smaller work than the Chenab, but it is calculated to command 1,130,000 acres, of which at least half will be watered annually. A much smaller work, but one of great interest, is the Swat river canal in the Peshawar valley. It was never expected that this would be a remunerative work, but it was thought for political reasons expedient to construct it in order to induce turbulent frontier tribes to settle down into peaceful agriculture. This has had a great measure of success, and the canal itself has proved remunerative, irrigating 123,000 acres in 1896–1897. A much greater scheme than any of the above is that of the Sind Sagar canal, projected from the left bank of the Indus opposite Kalabagh, to irrigate 1,750,000 acres at a cost of Rx. 6,000,000. Another great canal scheme for the Punjab