This page has been proofread, but needs to be validated.
628  
LIGHTHOUSE
[STRUCTURES


forces. At the third rebuilding in 1783 a stone tower 68 ft. in height was erected, the illuminant consisting of four oil lamps. Other early lighthouse structures on the New England coast were those at Beaver Tail, near the entrance to Newport Harbour (1740), and the Brant at the entrance to Nantucket Harbour (1754). A watch-house and beacon appear to have been erected on Beacon or Lighthouse Island as well as on Point Allerton Hill near Boston, prior to 1673, but these structures would seem to have been in the nature of look-out stations in time of war rather than lighthouses for the guidance of mariners.

2. Lighthouse Structures.—The structures of lighthouses may be divided into two classes, (a) those on rocks, shoals or in other situations exposed to the force of the sea, and (b) the more numerous class of land structures.

Fig. 1.—Cordouan Lighthouse.

Wave-swept Towers.—In determining the design of a lighthouse tower to be erected in a wave-swept position consideration must be given to the physical features of the site and its surroundings. Towers of this description are classified as follows: (1) Masonry and concrete structures; (2) Openwork steel and iron-framed erections on pile or other foundations; (3) Cast iron plated towers; (4) Structures erected on cylinder foundations.

(1) Masonry Towers.—Masonry or concrete towers are generally preferred for erection on wave-swept rocks affording good foundation, and have also been constructed in other situations where adequate foundations have been made by sinking caissons into a soft sea bed. Smeaton’s tower on the Eddystone Rock is the model upon which most later designs of masonry towers have been based, although many improvements in detail have since been made. In situations of great exposure the following requirements in design should be observed: (a) The centre of gravity of the tower structure should be as low as possible. (b) The mass of the structure superimposed at any horizontal section must be sufficient to prevent its displacement by the combined forces of wind and waves without dependence on the adhesion at horizontal joint faces or on the dovetailing of stones introduced as an additional safeguard. (c) The structure should be circular in plan throughout, this form affording the least resistance to wave stroke and wind pressure in any direction. (d) The lower portion of the tower exposed to the direct horizontal stroke of the waves should, for preference, be constructed with vertical face. The upper portion to be either straight with uniform batter or continuously curved in the vertical plane. External projections from the face of the tower, except in the case of a gallery under the lantern, should be avoided, the surface throughout being smooth. (e) The height from sea-level to the top of the tower should be sufficient to avoid the obscuration of the light by broken water or dense spray driving over the lantern. (f) The foundation of the tower should be carried well into the solid rock. (g) The materials of which the tower is built should be of high density and of resistant nature. (h) The stones used in the construction of the tower, at any rate those on the outer face, should be dovetailed or joggled one to the other in order to prevent their being dislodged by the sea during the process of construction and as an additional safeguard of stability. Of late years, cement concrete has been used to a considerable extent for maritime structures, including lighthouses, either alone or faced with masonry.

(2) Openwork Structures.—Many examples of openwork steel and iron lighthouses exist. Some typical examples are described hereafter. This form of design is suitable for situations where the tower has to be carried on a foundation of iron or steel piles driven or screwed into an insecure or sandy bottom, such as on shoals, coral reefs and sand banks or in places where other materials of construction are exceptionally costly and where facility of erection is a desideratum.

(3) Cast iron Towers.—Cast iron plated towers have been erected in many situations where the cost of stone or scarcity of labour would have made the erection of a masonry tower excessively expensive.

(4) Caisson Foundations.—Cylinder or caisson foundations have been used for lighthouse towers in numerous cases where such structures have been erected on sand banks or shoals. A remarkable instance is the Rothersand Tower. Two attempts have been made to sink a caisson in the outer Diamond Shoal off Cape Hatteras on the Atlantic coast of the United States, but these have proved futile.

The following are brief descriptions of the more important wave-swept towers in various parts of the world.

Eddystone (Winstanley’s Tower).—The Eddystone rocks, which lie about 14 m. off Plymouth, are fully exposed to south-west seas. The reef is submerged at high water of spring tides. Four towers have been constructed on the reef. The first lighthouse (fig. 2) was polygonal in plan and highly ornamented with galleries and projections which offered considerable resistance to the sea stroke. The work was begun by Henry Winstanley, a gentleman of Essex, in 1695. In 1698 it was finished to a height of 80 ft. to the wind vane and the light exhibited, but in the following year, in consequence of damage by storms, the tower was increased in diameter from 16 ft. to 24 ft. by the addition of an outer ring of masonry and made solid to a height of 20 ft. above the rock, the tower being raised to nearly 120 ft. The work was completed in the year 1700. The lower part of the structure appears to have been of stone, the upper part and lantern of timber. During the great storm of the 20th of November 1703 the tower was swept away, those in it at the time, including the builder, being drowned.

Eddystone (Rudyerd’s Tower, fig. 3).—This structure was begun in 1706 and completed in 1709. It was a frustum of a cone 22 ft. 8 in. in diameter at the base and 14 ft. 3 in. at the top. The tower was 92 ft. in height to the top of the lantern. The work consisted principally of oak timbers securely bolted and cramped together, the lower part being filled in solid with stone to add weight to the structure. The simplicity of the design and the absence of projections from the outer face rendered the tower very suitable to withstand the onslaught of the waves. The lighthouse was destroyed by fire in 1755.

Eddystone (Smeaton’s Tower, fig. 4).—This famous work, which consisted entirely of stone, was begun in 1756, the light being first exhibited in 1759. John Smeaton was the first engineer to use dovetailed joints for the stones in a lighthouse structure. The stones, which averaged 1 ton in weight, were fastened to each other by means of dovetailed vertical joint faces, oak key wedges, and by oak tree-nails wedged top and bottom, extending vertically from every course into the stones beneath it. During the 19th century the tower was strengthened on two occasions by the addition of heavy wrought iron ties, and the overhanging cornice was reduced in diameter to prevent the waves from lifting the stones from their beds. In 1877, owing partly to the undermining of the rock on which the tower was built and the insufficient height of the structure,