This page has been proofread, but needs to be validated.
642
LIGHTHOUSE
[LIGHTS AND BEACONS


Planier had been lighted, in addition to the old apparatus at La Hève, it was decided to limit the installation of electrical apparatus to important landfall lights—a decision which the Trinity House had already arrived at in the case of the English coast—and to establish new apparatus at six stations only. These were Créac’h d’Ouessant (Ushant), Belle-Île, La Coubre at the mouth of the river Gironde, Barfleur, Île d’Yeu and Penmarc’h. At the same time it was determined to increase the powers of the existing electric lights. The scheme as amended in 1886 was completed in 1902.[1]

All the electrically lit apparatus, in common with other optics established in France since 1893, have been provided with mercury rotation. The most recent electric lights have been constructed in the form of twin apparatus, two complete and distinct optics being mounted side by side upon the same revolving table and with corresponding faces parallel. It is found that a far larger aggregate candle-power is obtained from two lamps with 16 mm. to 23 mm. diameter carbons and currents of 60 to 120 amperes than with carbons and currents of larger dimensions in conjunction with single optics of greater focal distance. A somewhat similar circumstance led to the choice of the twin form for the two very powerful non-electric apparatus at Île Vierge (figs. 43 and 43a) and Ailly, particulars of which will be seen in table VII.

Several of the de Meritens magneto-electric machines of 5.5 K.W., laid down many years ago at French electric lighthouse stations, are still in use. All these machines have five induction coils, which, upon the installation of the twin optics, were separated into two distinct circuits, each consisting of 21/2 coils. This modification has enabled the old plants to be used with success under the altered conditions of lighting entailed by the use of two lamps. The generators adopted in the French service for use at the later stations differ materially from the old type of de Meritens machine. The Phare d’Eckmühl (Penmarc’h) installation serves as a type of the more modern machinery. The dynamos are alternating current two-phase machines, and are installed in duplicate. The two lamps are supplied with current from the same machine, the second dynamo being held in reserve. The speed is 810 to 820 revolutions per minute.

The lamp generally adopted is a combination of the Serrin and Berjot principles, with certain modifications. Clockwork mechanism with a regulating electro-magnet moves the rods simultaneously and controls the movements of the carbons so that they are displaced at the same rate as they are consumed. It is usual to employ currents of varying power with carbons of corresponding dimensions according to the atmospheric conditions. In the French service two variations are used in the case of twin apparatus produced by currents of 60 and 120 amperes at 45 volts with carbons 14 mm. and 18 mm. diameter, while in single optic apparatus currents of 25, 50 and 100 amperes are utilized with carbon of 11 mm., 16 mm. and 23 mm. diameter. In England fluted carbons of larger diameter are employed with correspondingly increased current. Alternating currents have given the most successful results in all respects. Attempts to utilize continuous current for lighthouse arc lights have, up to the present, met with little success.

The cost of a first-class electric lighthouse installation of the most recent type in France, including optical apparatus, lantern, dynamos, engines, air compressor, siren, &c., but not buildings, amounts approximately to £5900.

Efficiency of the Electric Light.—In 1883 the lighthouse authorities of Great Britain determined that an exhaustive series of experiments should be carried out at the South Foreland with a view to ascertaining the relative suitability of electricity, gas and oil as lighthouse illuminants. The experiments extended over a period of more than twelve months, and were attended by representatives of the chief lighthouse authorities of the world. The results of the trials tended to show that the rays of oil and gas lights suffered to about equal extent by atmospheric absorption, but that oil had the advantage over gas by reason of its greater economy in cost of maintenance and in initial outlay on installation. The electric light was found to suffer to a much larger extent than either oil or gas light per unit of power by atmospheric absorption, but the infinitely greater total intensity of the beam obtainable by its use, both by reason of the high luminous intensity of the electric arc and its focal compactness, more than outweighed the higher percentage of loss in fog. The final conclusion of the committee on the relative merits of electricity, gas or oil as lighthouse illuminants is given in the following words: “That for ordinary necessities of lighthouse illumination, mineral oil is the most suitable and economical illuminant, and that for salient headlands, important landfalls, and places where a very powerful light is required electricity offers the greater advantages.”

5. Miscellaneous Lighthouse Equipment. Lanterns.—Modern lighthouse lanterns usually consist of a cast iron or steel pedestal, cylindrical in plan, on which is erected the lantern glazing, surmounted by a domed roof and ventilator (fig. 41). Adequate ventilation is of great importance, and is provided by means of ventilators in the pedestal and a large ventilating dome or cowl in the roof. The astragals carrying the glazing are of wrought steel or gun-metal. The astragals are frequently arranged helically or diagonally, thus causing a minimum of obstruction to the light rays in any vertical section and affording greater rigidity to the structure. The glazing is usually 1/4-in. thick plate-glass curved to the radius of the lantern. In situations of great exposure the thickness is increased. Lantern roofs are of sheet steel or copper secured to steel or cast-iron rafter frames. In certain instances it is found necessary to erect a grille or network outside the lantern to prevent the numerous sea birds, attracted by the light, from breaking the glazing by impact. Lanterns vary in diameter from 5 ft. to 16 ft. or more, according to the size of the optical apparatus. For first order apparatus a diameter of 12 ft. or 14 ft. is usual.

Lightning Conductors.—The lantern and principal metallic structures in a lighthouse are usually connected to a lightning conductor carried either to a point below low water or terminating in an earth plate embedded in wet ground. Conductors may be of copper tape or copper-wire rope.

Rotating Machinery.—Flashing-light apparatus are rotated by clockwork mechanism actuated by weights. The clocks are fitted with speed governors and electric warning apparatus to indicate variation in speed and when rewinding is required. For occulting apparatus either weight clocks or spring clocks are employed.

Accommodation for Keepers, &c.—At rock and other isolated stations, accommodation for the keepers is usually provided in the towers. In the case of land lighthouses, dwellings are provided in close proximity to the tower. The service or watch room should be situated immediately under the lantern floor. Oil is usually stored in galvanized steel tanks. A force pump is sometimes used for pumping oil from the storage tanks to a service tank in the watch-room or lantern.

6. Unattended Lights and Beacons.—Until recent years no unattended lights were in existence. The introduction of Pintsch’s gas system in the early ’seventies provided a means of illumination for beacons and buoys of which large use has been made. Other illuminants are also in use to a considerable extent.

Unattended Electric Lights.—In 1884 an iron beacon lighted by an incandescent lamp supplied with current from a secondary battery was erected on a tidal rock near Cadiz. A 28-day clock was arranged for eclipsing the light between sunrise and sunset and automatically cutting off the current at intervals to produce an occulting characteristic. Several small dioptric apparatus illuminated with incandescent electric lamps have been made by the firm of Barbier Bénard et Turenne of Paris, and supplied with current from batteries of Daniell cells, with electric clockwork mechanism for occulting the light. These apparatus have been fitted to beacons and buoys, and are generally arranged to automatically switch off the current during the day-time. They run unattended for periods up to two months. Two separate lenses and lamps are usually provided, with lamp changer, only one lamp being in circuit at a time. In the event of failure in the upper lamp of the two the current automatically passes to the lower lamp.

Fig. 46.—Garvel Beacon.

Oil-gas Beacons.—In 1881 a beacon automatically lighted by Pintsch’s compressed oil gas was erected on the river Clyde, and large numbers of these structures have since been installed in all parts of the world. The gas is contained in an iron or steel reservoir placed within the beacon structure, refilled by means of a flexible hose on the occasions of the periodical visits of the tender. The beacons, which remain illuminated for periods up to three months are charged to 7 atmospheres. Many lights are provided with occulting apparatus actuated by the gas passing from the reservoir to the burner automatically cutting off and turning on the supply. The Garvel beacon (1899) on the Clyde is shown in fig. 46. The burner has 7 jets, and the light is occulting. Since 1907 incandescent mantle burners for oil gas have been largely used for beacon illumination, both for fixed and occulting lights.

Acetylene has also been used for the illumination of beacons and other unattended lights.

Lindberg Lights.—In 1881–1882 several beacons lighted automatically by volatile petroleum spirit on the Lindberg-Lyth and Lindberg-Trotter systems were established in Sweden. Many lights of this type have subsequently been placed in different parts of the world. The volatile spirit lamp burns day and night. Occultations are produced by a screen or series of screens rotated round the light by the ascending current of heated air and gases from the lamp


  1. In 1901 one of the lights decided upon in 1886 and installed in 1888—Créac’h d’Ouessant—was replaced by a still more powerful twin apparatus exhibited at the 1900 Paris Exhibition. Subsequently similar apparatus to that at Créac’h were installed at Gris-Nez, La Canche, Planier, Barfleur, Belle-Île and La Coubre, and the old Dunkerque optic has been replaced by that removed from Belle-Île.