This page has been proofread, but needs to be validated.
ELECTRIC]
LIGHTING
661


due to the true arc. These laws are simple consequences of straight-line laws connecting the work spent in the arc at the two electrodes with the other quantities. If W be the work spent in the arc on either carbon, measured by the product of the current and the potential drop in passing from the carbon to the arc, or vice versa, then for the positive carbon W = a + bA, if the length of arc is constant, W = c + dL, if the current through the arc is constant, and for the negative carbon W = e + fA.

In the above experiments the potential difference between the carbons and the arc was measured by using a third exploring carbon as an electrode immersed in the arc. This method, adopted by Lecher, F. Uppenborn, S. P. Thompson, and J. A. Fleming, is open to the objection that the introduction of the third carbon may to a considerable extent disturb the distribution of potential.

The total work spent in the continuous-current arc with solid carbons may, according to Mrs Ayrton, be expressed by the equation

W = 11.7 + 10.5L + (38.9 + 2.07L) A.

It will thus be seen that the arc, considered as a conductor, has the property that if the current through it is increased, the difference of potential between the carbons is decreased, and in one sense, therefore, the arc may be said to act as if it were a negative resistance. Frith and Rodgers (Electrician, 1896, 38, p. 75) have suggested that the resistance of the arc should be measured by the ratio between a small increment of carbon potential difference and the resulting small increment of current; in other words, by the equation dV/dA, and not by the ratio simply of V:A. Considerable discussion has taken place whether an electrical resistance can have a negative value, belonging as it does to the class of scalar mathematical quantities. Simply considered as an electrical conductor, the arc resembles an intensely heated rod of magnesia or other refractory oxide, the true resistance of which is decreased by rise of temperature. Hence an increase of current through such a rod of refractory oxide is accompanied by a decrease in the potential difference of the ends. This, however, does not imply a negative resistance, but merely the presence of a resistance with a negative temperature coefficient. If we plot a curve such that the ordinates are the difference of potential of the carbons and the abscissae the current through the arc for constant length of arc, this curve is now called a characteristic curve of the arc and its slope at any point the instantaneous resistance of the arc.

Other physical investigations have been concerned with the intrinsic brightness of the crater. It has been asserted by many observers, such as Blondel, Sir W. de W. Abney, S. P. Thompson, Trotter, L. J. G. Violle and others, that this is practically independent of the current passing, but great differences of opinion exist as to its value. Abney’s values lie between 39 and 116, Trotter’s between 80 and 170 candles per square millimetre. Blondel in 1893 made careful determinations of the brightness of the arc crater, and came to the conclusion that it was 160 candles per square millimetre. Subsequently J. E. Petavel found a value of 147 candles per square millimetre for current densities varying from .06 to .26 amperes per square millimetre (Proc. Roy. Soc., 1899, 65, p. 469). Violle also, in 1893, supported the opinion that the brightness of the crater per square millimetre was independent of the current density, and from certain experiments and assumptions as to the specific heat of carbon, he asserted the temperature of the crater was about 3500° C. It has been concluded that this constancy of temperature, and therefore of brightness, is due to the fact that the crater is at the temperature of the boiling-point of carbon, and in that case its temperature should be raised by increasing the pressure under which the arc works. W. E. Wilson in 1895 attempted to measure the brightness of the crater under various pressures, and found that under five atmospheres the resistance of the arc appeared to increase and the temperature of the crater to fall, until at a pressure of 20 atmospheres the brightness of the crater had fallen to a dull red. In a later paper Wilson and G. F. Fitzgerald stated that these preliminary experiments were not confirmed, and their later researches throw considerable doubt on the suggestion that it is the boiling-point of carbon which determines the temperature of the crater. (See Electrician, 1895, 35, p. 260, and 1897, 38, p. 343.)

Fig. 6.

The study of the alternating-current arc has suggested a number of new experimental problems for investigators. In this case all the factors, namely, current, carbon P.D., resistance, and illuminating power, are periodically varying; and as the electromotive force reverses Alternating current arc. itself periodically, at certain instants the current through the arc is zero. As the current can be interrupted for a moment without extinguishing the arc, it is possible to work the electric arc from an alternating current generator without apparent intermission in the light, provided that the frequency is not much below 50. During the moment that the current is zero the carbon continues to glow. Each carbon in turn becomes, so to speak, the crater carbon, and the illuminating power is therefore symmetrically distributed. The curve of illumination is as shown in fig. 3. The nature of the variation of the current and arc P.D. can be examined by one of two methods, or their modifications, originally due to Jules Joubert and A. E. Blondel. Joubert’s method, which has been perfected by many observers, consists in attaching to the shaft of the alternator a contact which closes a circuit at an assigned instant during the phase. This contact is made to complete connexion either with a voltmeter or with a galvanometer placed as a shunt across the carbons or in series with the arc. By this arrangement these instruments do not read, as usual, the root-mean-square value of the arc P.D. or current, but give a constant indication determined by, and indicating, the instantaneous values of these quantities at some assigned instant. By progressive variation of the phase-instant at which the contact is made, the successive instantaneous values of the electric quantities can be measured and plotted out in the form of curves. This method has been much employed by Blondel, Fleming, C. P. Steinmetz, Tobey and Walbridge, Frith, H. Görges and many others. The second method, due to Blondel, depends on the use of the Oscillograph, which is a galvanometer having a needle or coil of very small periodic time of vibration, say 1/2000th part of a second or less, so that its deflections can follow the variations of current passing through the galvanometer. An improved form of oscillograph, devised by Duddell, consists of two fine wires, which are strained transversely to the lines of flux of a strong magnetic field (see Oscillograph). The current to be examined is made to pass up one wire and down the other, and these wires are then slightly displaced in opposite directions. A small mirror attached to the wires is thus deflected rapidly to and fro in synchronism with the variations of the current. From the mirror a ray of light is reflected which falls upon a photographic plate made to move across the field with a uniform motion. In this manner a photographic trace can be obtained of the wave form. By this method the variations of electric quantities in an alternating-current arc can be watched. The variation of illuminating power can be followed by examining and measuring the light of the arc through slits in a revolving stroboscopic disk, which is driven by a motor synchronously with the variation of current through the arc.

The general phenomena of the alternating-current arc are as follow:—

If the arc is supplied by an alternator of low inductance, and soft or cored carbons are employed to produce a steady and silent arc, the potential difference of the carbons periodically varies in a manner not very different from that of the alternator on open circuit. If, however, hard carbons are used, the alternating-current arc deforms the shape of the alternator electromotive force curve; the carbon P.D. curve may then have a very different form, and becomes, in general, more rectangular in shape, usually having a high peak at the front. The arc also impresses the deformation on the current curve. Blondel in 1893 (Electrician, 32, p. 161) gave a number of potential and current curves for alternating-current arcs, obtained by the Joubert contact method, using two movable coil galvanometers of high resistance to measure respectively potential difference and current. Blondel’s deductions were that the shape of the current and volt curves is greatly affected by the nature of the carbons, and also by the amount of inductance and resistance in the circuit of the alternator. Blondel, W. E. Ayrton, W. E. Sumpner and Steinmetz have all observed that the alternating-current arc, when hissing or when formed with uncored carbons, acts like an inductive resistance, and that there is a lag between the current curves and the potential difference curves. Hence the power-factor, or ratio between the true power and the product of the root-mean-square values of arc current and carbon potential