a deflection of light in passing the sun equal to that predicted by Einstein, it is not immediately obvious that this deflection must necessarily be attributed to the sun's gravitational field. It is suggested that it may not be an essential effect of the sun as a massive body, but an accidental effect owing to the circumstance that the sun is surrounded by a corona which acts as a refracting atmosphere. It would be a strange coincidence if this atmosphere imitated the theoretical law in the exact quantitative way shown in Fig. 17; and the suggestion appears to us far-fetched. However the objection can be met in a more direct way. We have already shown that the gravitational effect on light is equivalent to that produced by a refracting medium round the sun and have calculated the necessary refractive index. At a height of 400,000 miles above the surface the refractive index required is 1.0000021. This corresponds to air at 1140 atmosphere, hydrogen at 170 atmosphere, helium at 120 atmospheric pressure. It seems obvious that there can be no material of this order of density at such a distance from the sun. The pressure on the sun's surface of the columns of material involved would be of the order 10,000 atmospheres; and we know from spectroscopic evidence that there is no pressure of this order. If it is urged that the mass could perhaps be supported by electrical forces, the argument from absorption is even more cogent. The light from the stars photographed during the eclipse has passed through a depth of at least a million miles of material of this order of density—or say the equivalent of 10,000 miles of air at atmospheric density. We know to our cost what absorption the earth's 5 miles of homogeneous atmosphere can effect. And yet at the eclipse the stars appeared on the photographs with their normal brightness. If the irrepressible critic insists that the material round the sun may be composed of some new element with properties unlike any material known to us, we may reply that the mechanism of refraction and of absorption is the same, and there is a limit to the possibility of refraction without appreciable absorption. Finally it would be necessary to arrange that the density of the material falls off inversely as the distance from the sun's centre in order to give the required variation of refractive index.
Several comets have been known to approach the sun within