Page:Elementary Color (IA gri c00033125012656167).djvu/29

This page has been proofread, but needs to be validated.
THE THEORY OF COLOR.
19

the fire at the end produces the effect of a circle of light, which phenomenon is explained by a quality of the eye called retention of vision, by which the impression made by the point of light remains on the retina of the eye during an entire rotation. It is a fact, based on the same quality of vision, that if one color is presented to the eye, and instantly replaced by another the effect is a combination of the two colors. Therefore if one-quarter of the surface of a disk of cardboard is covered with orange paper and three-quarters with red paper, and then the disk placed on a rapidly rotating spindle, the color effect is a mixture of red and orange, and the effect is exactly in proportion to the angular measurements of the two sectors, so that if the circumference is divided into 100 equal parts the resultant color will be definitely represented by the formula "Red, 75; Orange, 25."

Less than forty years ago an English scientist named J. Clerk Maxwell while making experiments with such painted disks happily conceived the idea of cutting a radial slit in each of two disks from the circumference to the center so that by joining the disks they could be made to show any desired proportion of each and hence they are called Maxwell disks- With such disks made in the six pigmentary standards red, orange, yellow, green, blue and violet, the intermediate pigmentary spectrum colors may be very accurately determined by combination and rotation. If we give to each of these standards a symbol as R. for red, 0- for orange, Y. for yellow, G. for green, B. for blue, V. for violet, we then have the basis for a definite nomenclature of colors in imitation of the pure spectrum colors. As all pigmentary or material colors are modified by light and shade thus producing in high light tints and in shadow shades of the colors, we must seek for some means of imitating these effects, and fortunately find them in white and black disks. If with a standard color disk we combine a white disk we may have a line of tints of that color, and with a black disk, shades. Giving this white disk a symbol of W. and the black disk N.