This page has been validated.

electrons, and the idea of force acting between them and the æther is dispensed with.

If, then, matter is for physical purposes a purely æthereal system, if it is constituted of simple polar singularities or electrons, positive and negative, in the Maxwellian æther, the nuclei of which may be either practically points or else small regions of æther with internal connexions of pure constraint, the propositions above stated for the first order are extended to the second order of v/c, with the single addition of the FitzGerald-Lorentz shrinkage in the scale of space, and an equal one in the scale of time, which, being isotropic, is unrecognizable.

On such a theory as this the criticism presents itself, and was in fact at once made, that one hypothesis is needed to annul optical effects to the first order; that when these were found to be actually null to the second order another hypothesis had to be added; and that another hypothesis would be required for the third order, while in fact there was no reason to believe that they were not exactly null to all order. Such a train of remarks indicates that the nature of the hypotheses has been overlooked. And if indeed it could be proved that the optical effect is null up to the third order, that circumstance would not demolish the theory, but would rather point to some finer adjustments than it provides for: needless to say the attempt would indefinitely transcend existing experimental possibilities.

As, then, the theory contains no further power of immediate adaptation, what are the hypotheses on which it rests, and how far are they gratuitous hypotheses introduced for this purpose alone? Up to the first order the electron hypothesis, that electricity is atomic, suffices by itself, as Lorentz was the first to show. Yet, even if the nature of the particles of the cathode discharge had never been made out, and the Zeeman effect had never been discovered, the facts known to Ampere and Faraday were sufficient to demonstrate that no other conception of electricity than the atomic one is logically self-consistent.[1]

Up to the second order the hypothesis that matter is constituted electrically — of electrons — is required in addition. For this there is no independent evidence except perhaps the general simplicity of the correlations of physical law. The circumstance that positive electrons have not yet been isolated naturally counts considerably on the other side; yet the theory puts no limit to the size and inertia and complexity of an electron, it only prescribes that it must be a collocation of æther poles connected together by some sort of pure constraint, but with no extraneous activities.

  1. Cf. 'Æther and Matter,' p. 337.