Page:Littell's Living Age - Volume 128.djvu/657

This page has been proofread, but needs to be validated.
ANIMAL AND THE VEGETABLE KINGDOMS.
647

laboratories in which this operation is effected.

The great majority of conspicuous plants are, as everybody knows, green; and this arises from the abundance of their chlorophyll. The few which contain no chlorophyll and are colourless, are unable to extract the carbon which they require from atmospheric carbonic acid, and lead a parasitic existence upon other plants; but it by no means follows, often as the statement has been repeated, that the manufacturing power of plants depends on their chlorophyll, and its interaction with the rays of the sun. On the contrary, it is easily demonstrated, as Pasteur first proved, that the lowest fungi, devoid of chlorophyll, or of any substitute for it, as they are, nevertheless possess the characteristic manufacturing powers of plants in a very high degree. Only it is necessary that they should be supplied with a different kind of raw material; as they cannot extract carbon from carbonic acid, they must be furnished with something else that contains carbon. Tartaric acid is such a substance; and if a single spore of the commonest and most troublesome of moulds — Penicillium — be sown in a saucer full of water, in which tartrate of ammonia, with a small percentage of phosphates and sulphates is contained, and kept warm, whether in the dark or exposed to light, it will, in a short time, give rise to a thick crust of mould, which contains many million times the weight of the original spore, in protein compounds and cellulose. Thus we have a very wide basis of fact for the generalization that plants are essentially characterized by their manufacturing capacity by their power of working up mere mineral matters into complex organic compounds.

Contrariwise, there is a no less wide foundation for the generalization that animals, as Cuvier puts it, depend directly or indirectly upon plants for the materials of their bodies; that is, either they are herbivorous, or they eat other animals which are herbivorous.

But for what constituents of their bodies are animals thus dependent upon plants? Certainly not for their horny matter; nor for chondrin, the proximate chemical element of cartilage; nor for gelatine; nor for syntonin, the constituent of muscle; nor for their nervous or biliary substances; nor for their amyloid matters; nor, necessarily, for their fats.

It can be experimentally demonstrated that animals can make these for themselves. But that which they cannot make, but must, in all known cases, obtain directly or indirectly from plants, is the peculiar nitrogenous matter protein. Thus the plant is the ideal prolétaire of the living world, the worker who produces; the animal, the ideal aristocrat, who mostly occupies himself in consuming, after the manner of that noble representative of the line of Zähdarm, whose epitaph is written in "Sartor Resartus."

Here is our last hope of finding a sharp line of demarcation between plants and animals; for, as I have already hinted, there is a border territory between the two kingdoms, a sort of no-man's land, the inhabitants of which certainly cannot be discriminated and brought to their proper allegiance in any other way.

Some months ago, Professor Tyndall asked me to examine a drop of infusion of hay, placed under an excellent and powerful microscope, and to tell him what I thought some organisms visible in it were. I looked and observed, in the first place, multitudes of Bacteria moving about with their ordinary intermittent spasmodic wriggles. As to the vegetable nature of these there is now no doubt. Not only does the close resemblance of the Bacteria to unquestionable plants, such as the Oscillatoriæ, and lower forms of fungi, justify this conclusion, but the manufacturing test settles the question at once. It is only needful to add a minute drop of fluid containing Bacteria, to water in which tartrate, phosphate, and sulphate of ammonia are dissolved; and, in a very short space of time, the clear fluid becomes milky by reason of their prodigious multiplication, which, of course, implies the manufacture of living bacterium-stuff out of these merely saline matters.

But other active organisms, very much larger than the Bacteria, attaining in fact the comparatively gigantic dimensions of one three-thousandth part of an inch or more, incessantly crossed the field of view. Each of these had a body shaped like a pear, the small end being slightly incurved and produced into a long curved filament, or cilium, of extreme tenuity. Behind this, from the concave side of the incurvation, proceeded another long cilium, so delicate as to be discernible only by the use of the highest powers and careful management of the light. In the centre of the pear-shaped body a clear round space could occasionally be discerned, but not always; and careful watching showed that this clear vacuity appeared gradually, and then shut up and disappeared suddenly, at regular intervals. Such a struc-