This page has been validated.
172
the mathematical principles
[Book I.

is at first urged in I, as DR to DF. Let the body go on towards k; and about the centre C, with the interval Ck, describe the circle ke, meeting the right line PD in e, and let there be erected the lines eg, ev, ew, ordinately applied to the curves BFg, abv, acw. From the given rectangle PDRQ and the given law of centripetal force, by which the first body is acted on, the curve line BFg is also given, by the construction of Prop. XXVII, and its Cor. 1. Then from the given angle CIK is given the proportion of the nascent lines IK, KN; and thence, by the construction of Prob. XXVIII, there is given the quantity Q, with the curve lines abv, acw; and therefore, at the end of any time Dbve, there is given both the altitude of the body Ce or Ck, and the area Dcwe, with the sector equal to it XCy, the angle ICk, and the place k, in which the body will then be found.   Q.E.I.

We suppose in these Propositions the centripetal force to vary in its recess from the centre according to some law, which any one may imagine at pleasure; but at equal distances from the centre to be everywhere the same.

I have hitherto considered the motions of bodies in immovable orbits. It remains now to add something concerning their motions in orbits which revolve round the centres of force.

SECTION IX.

Of the motion of bodies in moveable orbits; and of the motion of the apsides.


PROPOSITION XLIII. PROBLEM XXX.

It is required to make a body move in a trajectory that revolves about the centre of force in the same manner as another body in the same trajectory at rest.

In the orbit VPK, given by position, let the body P revolve, proceeding from V towards K. From the centre C let there be continually drawn Cp, equal to CP, making the angle VCp proportional to the angle VCP; and the area which the line Cp describes will be to the area VCP, which the line CP describes at the same time, as the velocity of the describing line Cp to the velocity of the describing line CP; that is, as the angle VCp to the angle VCP, therefore in a given ratio, and therefore proportional to the time. Since, then, the area described by the line Cp in an immovable plane is proportional to the time, it is manifest that a body, being acted upon by a just quantity of centripetal force may