Page:Popular Astronomy - Airy - 1881.djvu/55

This page has been validated.
LECTURE II.
41

when that star passes under that meridian, how far it is from the Pole round which the globe turns.

I then pointed out that the transit instrument is one of the instruments particularly adapted to this purpose. The transit instrument does by its motion on the axis I described, trace on the sky a curve exactly similar to the brass meridian of the globe, provided these conditions be observed: first, the axis must be horizontal; secondly, the telescope must be square to its axis; and thirdly, when the telescope is turned to the north, it must in its sweep pass over the centre of rotation of the stars. All this I fully explained, but I give this recapitulation that it may be kept in recollection as we proceed with our lectures. By means then of this transit instrument, the condition of representing the brazen meridian by an imaginary track of the telescope through the heavens is fulfilled. I then mentioned that we make use of a clock in all observations; that the way of using it is, having noted the time when some star or object passes the meridian, to find by the clock the interval of time until other stars or planets pass the meridian.

I may now add one subject which I omitted, and it is to state what we mean by a Sidereal Day. We observe on this day a bright star, for instance Arcturus, passing the meridian. We note the time by our clock, in hours, minutes, and seconds, and the fraction of a second. To-morrow we again observe the passage of Arcturus across the meridian. The interval between these passages is a sidereal day. A sidereal day is not quite the same as a common day. But I do not insist on that at present, because it is connected with other things, one of which is the motion of the sun. It is important to understand