Page:Popular Science Monthly Volume 12.djvu/353

This page has been validated.
HISTORY OF DYNAMICAL THEORY OF HEAT.
339

dry atmospheric air was forced until a tension of about twenty-two atmospheres at the ordinary temperature of the room was attained. The other was exhausted by an air-pump. Being then coupled together, they were immersed in a tank containing about sixteen and a half pounds of water, which was stirred, and its temperature taken on a very sensible thermometer, indicating approximately thousandths of a degree. The stopcocks were next opened and the air allowed to rush from one reservoir to the other until the tensions were more nearly or quite equal in both. Lastly, the water was again stirred and its temperature carefully noted. A correction was obtained after each experiment, by noting the increase of temperature caused by an equal amount of stirring, uninfluenced by any possible effects of the expansion.

Five experiments upon the thermal effect thus attending the expansion of atmospheric air showed a mean increase in the temperature of the water of 0.0074°, while the correction to be applied amounted to 0.0068, leaving a difference quite within the limits of observation by this method. Joule, therefore, concluded that "no change of temperature occurs when air is allowed to expand in such a manner as not to develop mechanical power."

If this result or property of atmospheric air had been known to Mayer, and construed by him to imply the total absence of a transformable, internal store of potential energy in gaseous substance, so that the energy embodying the condition variously styled its pure, real, actual, or sensible heat could only be affected by some external agency, mechanical or thermal, and if the effect upon a thermometer, produced by this condition, had been also known to vary directly with the whole quantity of energy comprising it, the method which he indicated would have led to an admissible result.

But, in reality, Gay-Lussac, from his original experiments, had not come to any very definite conclusions on this point. The temperature of each receiver had been found by him to change; but not using an equivalent device to that of the submerging tank of water, he had not been able to determine, on the whole, whether heat had been lost, or gained, in the expansion. When, therefore, Mayer, in 1849, defended his claims by a reference to these first experiments on this point, the answer was available to Joule that, prior to his own researches, the all-important principle assumed had not been recognized in science; and that the results obtained by Gay-Lussac tended only to render the question still more doubtful.