Page:Popular Science Monthly Volume 15.djvu/747

This page has been validated.
PROTOPLASM AND LIFE.
727

their preservation to the presence of the hard, persistent structures secreted by their protoplasm, and must, after all, have formed but a very small proportion of the unicellular organisms which peopled the ancient world, and there fulfilled the duties allotted to them in nature, but whose soft, perishable bodies have left no trace behind.

In our own days similar unicellular organisms are at work, taking their part silently and unobtrusively in the great scheme of creation, and mostly destined, like their predecessors, to leave behind them no record of their existence. The Red-Snow plant, to which is mainly due the beautiful phenomenon by which tracts of Arctic and Alpine snow become tinged of a delicate crimson, is a microscopic organism whose whole body consists of a simple spherical cell. In the protoplasm of this little cell must reside all the essential attributes of life; it must grow by the reception of nutriment; it must repeat by multiplication that form which it has itself inherited from its parent; it must be able to respond to the stimulus of the physical conditions by which it is surrounded. And there it is, with its structure almost on the bounds of extremest simplification, taking its allotted part in the economy of nature, combining into living matter the lifeless elements which lie around it, redeeming from sterility the regions of never-thawing ice, and peopling with its countless millions the wastes of the snow-land.[1]

But organization does not long rest on this low stage of unicellular simplicity, for, as we pass from these lowest forms into higher, we find cell added to cell, until many millions of such units become associated in a single organism, where each cell, or each group of cells, has its own special work, while all combine for the welfare and unity of the whole.

In the most complex animals, however, even in man himself, the component cells, notwithstanding their frequent modification and the usual intimacy of their union, are far from losing their individuality. Examine under the microscope a drop of blood freshly taken from the human subject, or from any of the higher animals. It is seen to be composed of a multitude of red corpuscles, swimming in a nearly colorless liquid, and along with these, but in much smaller numbers, somewhat larger colorless corpuscles. The red corpuscles are modified cells, while the colorless corpuscles are cells still retaining their typical form and properties. These last are little masses of protoplasm, each enveloping a central nucleus. Watch them. They will be seen to change their shape; they will project and withdraw pseudopodia, and creep about like an Amœba. But, more than this, like an Amœba, they will take in solid matter as nutriment. They may be fed with

  1. The Red-Snow plant (Protococcus nivalis) acts on the atmosphere through the agency of chlorophyl, like the ordinary green plants. As in these, chlorophyl is developed in it, and is only withdrawn from view by the predominant red pigment to which the Protococcus owes one of its most striking characteristics.