Page:Popular Science Monthly Volume 19.djvu/51

This page has been validated.
ACTION OF RADIANT HEAT.
41

are in utter disaccord with those obtained by other experimenters, who have ascribed a high absorption to air and none to aqueous vapor.

The action of aqueous vapor being thus revealed, the necessity of thoroughly drying the flasks, when testing other substances, becomes obvious. The following plan has been found effective: Each flask is first heated in the flame of a spirit-lamp until every visible trace of internal moisture has disappeared, and it is afterward raised to a temperature of about 400° C. While the flask is still hot, a glass tube is introduced into it, and air, freed from carbonic acid by caustic potash and from aqueous vapor by sulphuric acid, is urged through the flask until it is cool. Connected with the ear-tube, and exposed immediately to the intermittent beam, the attention of the ear, if I may use the term, is converged upon the flask. When the experiment is carefully made, dry air proves as incompetent to produce sound as to absorb radiant heat.

In 1868 I determined the absorptions of a great number of liquids whose vapors I did not examine. My experiments having amply proved the parallelism of liquid and vaporous absorption, I held undoubtingly twelve years ago that the vapor of cyanide of ethyl and of acetic acid would prove powerfully absorbent. This conclusion is now easily tested. A small quantity of either of these substances, placed in a bulb a cubic inch in volume, warmed and exposed to the intermittent beam, emits a sound of extraordinary power.

I also tried to extract sounds from perfumes, which I had proved in 1861 to be absorbers of radiant heat. I limit myself here to the vapors of patchouly and cassia, the former exercising a measured absorption of 30, and the latter an absorption of 109. Placed in dried flasks, and slightly warmed, sounds were obtained from both these substances, but the sound of cassia was much louder than that of patchouly.

Many years ago I had proved tetrachloride of carbon to be highly diathermanous. Its sounding power is as feeble as its absorbent power.

In relation to colliery explosions, the deportment of marsh-gas was of special interest. Professor Dewar was good enough to furnish me with a pure sample of this gas. The sounds produced by it, when exposed to the intermittent beam, were very powerful. Chloride of methyl, a liquid which boils at the ordinary temperature of the air, was poured into a small flask, and permitted to displace the air within it. Exposed to the intermittent beam, its sound was similar in power to that of marsh-gas. The specific gravity of marsh-gas being about half that of air, it might be expected that the flask containing it, when left open and erect, would soon get rid of its contents. This, however, is not the case. After a considerable interval, the film of this gas clinging to the interior surface of the flask was able to produce sounds of great power.