Page:Popular Science Monthly Volume 41.djvu/251

This page has been proofread, but needs to be validated.
DUST AND FRESH AIR.
239

is less, the mercury sinks in the tube, and the barometer is said to fall. Therefore, every change of height of the quicksilver which we observe is a sign and measure of a change in the volume of air around us. Further, this change in volume tells no less upon the air inside our cases and cupboards. When the barometer falls, the air around expands into a larger volume, and the air inside the cupboard also expands and forces itself out at every minute crevice. When the barometer rises again, the air inside the cupboard, as well as outside, condenses and shrinks, and air is forced back into the cupboard to equalize the pressure; and, along with the air, in goes the dust. The smaller the crevice, the stronger the jet of air, the farther goes the dirt. Witness the dirt-tracks so often seen in imperfectly framed engravings or photographs. Remember, ladies and gentlemen, whenever you see the barometer rising, that an additional charge of dust is entering your cupboards and drawers. So much for the barometer, which is a very restless creature, rarely stationary for many hours together. But this is not all. We also have the thermometer. The temperature of our rooms varies daily often considerably between midday and midnight, and greatly between summer and winter. What does the thermometer tell us? Not less than the barometer does it tell of change of volume of the air, though it is probably not so rapid in its effect upon the air in inclosed spaces as is the change of volume indicated by the barometer. Many of you have seen a fire-balloon. The heated air, filling the balloon, expands, and becomes lighter than the surrounding air, and up goes the balloon, until, the source of heat having become exhausted, the contained air cools, contracts, becomes as heavy as the surrounding air, and down comes the balloon again. So, also, as temperature rises outside our cases, the increased warmth is slowly conducted to the air inside the case, which expands and escapes through the crevices. Then, when the time for cooling comes, the air inside slowly contracts, and back rushes the air through the crevices, and again in goes the dust. Thus, we see we have two factors constantly acting, one or other tending to produce daily, nay, hourly, changes in volume of our dirt-carrying air.

In order to inform myself of the amount of change of volume that could, under extreme conditions, possibly take place, I asked Prof. Rücker to kindly calculate for me the change of volume that would take place in one hundred cubic feet of air, between a temperature of 30°, i. e., just above freezing-point, in combination with the barometer standing at thirty inches, or about "fair," and a temperature of 60°, combined with the barometer standing at twenty-nine inches, or "stormy." He told me that the difference would be about ten cubic feet, or one tenth; in other words, that