Page:Popular Science Monthly Volume 82.djvu/533

This page has been proofread, but needs to be validated.
THE METHOD OF POSITIVE RAYS
529

on the third bombardment is invisible in all the substances I have tried except monazite sand, where it is given off in exceedingly large quantities as long as the bombardment continues. It is remarkable that monazite sand, which contains so many elements, gives no trace of the three line when bombarded.

I have also obtained the line and also the helium line when the tube A was replaced by one containing a Wehnelt cathode; with this the current of cathode rays through the tube was much larger than with the other cathode, though the velocity of the rays was smaller. The Wehnelt cathode gives the line without placing pieces of metal in the tube, so that in this case nothing is bombarded by the cathode rays but the glass walls of the tube; the strip of metal forming the cathode is, however, bombarded by the positive rays.

The three line when present at all continues even though the bombardment is very prolonged. In some cases the bombardment has been prolonged for twenty hours, and at the end of that time the line seemed almost as bright as at the beginning; indeed I could not feel certain that there was any difference. This might lead one to suspect that was manufactured from the lead or other metal by the bombardment rather than stored up in it, and this view might be regarded as receiving some support from the fact that very little of the is liberated by heating. The following experiment is an illustration of this. I took a piece of lead, and instead of bombarding it with cathode rays I placed it in a quartz tube connected with vessel A, and heated the tube to a bright red-heat for several hours. Large quantities of and hydrogen were driven off by this process; this was absorbed by charcoal, and the residual gases, which had accumulated in A, were admitted into the vessel B; the line and helium line could just be detected, and that was all. I then gave the lead a second heating, raising this time the temperature until the quartz was on the point of softening. The lead was boiling vigorously; the heating was kept up for about three hours. In this time about three quarters of the lead had boiled away. I then let the gases which had been given off at the second heating into the vessel B, and took another photograph; no trace of the line due to or helium could be detected. The fraction of the lead which had not been boiled away was now placed in A and bombarded by cathode rays. It now gave the three line quite distinctly; the helium line was visible, but faint. By the bombardment with the cathode rays the lead was only just melted, so that the average temperature was much less than when it was heated in the quartz tube. This rather suggests that the might be due to a kind of dissociation of the metal by the cathode rays, and not to a liberation of a store of that substance. Another experiment shows, however, that for lead, at any rate, this view is not tenable. I took some lead which had just been deposited from a solution of lead