This page has been proofread, but needs to be validated.
4
RADIO-ACTIVE SUBSTANCES
[CH.

plates of metal and other substances opaque to ordinary light. The characteristic property of these radiations, besides their penetrating power, is their action on a photographic plate and their power of discharging electrified bodies. In addition, a strongly radio-active body like radium is able to cause marked phosphorescence and fluorescence on some substances placed near it. In the above respects the radiations possess properties analogous to Röntgen rays, but it will be shown that, for the major part of the radiations emitted, the resemblance is only superficial.

The most remarkable property of the radio-active bodies is their power of radiating energy spontaneously and continuously at a constant rate, without, as far as is known, the action upon them of any external exciting cause. The phenomena at first sight appear to be in direct contradiction to the law of conservation of energy, since no obvious change with time occurs in the radiating material. The phenomena appear still more remarkable when it is considered that the radio-active bodies must have been steadily radiating energy since the time of their formation in the earth's crust.

Immediately after Röntgen's discovery of the production of X rays, several physicists were led to examine if any natural bodies possessed the property of giving out radiations which could penetrate metals and other substances opaque to light. As the production of X rays seemed to be connected in some way with cathode rays, which cause strong fluorescent and phosphorescent effects on various bodies, the substances first examined were those that were phosphorescent when exposed to light. The first observation in this direction was made by Niewenglowski[1], who found that sulphide of calcium exposed to the sun's rays gave out some rays which were able to pass through black paper. A little later a similar result was recorded by H. Becquerel[2] for a special calcium sulphide preparation, and by Troost[3] for a specimen of hexagonal blend. These results were confirmed and extended in a later paper by Arnold[4]. No satisfactory explanations of these

  1. Niewenglowski, C. R. 122, p. 385, 1896.
  2. Becquerel, C. R. 122, p. 559, 1896.
  3. Troost, C. R. 122, p. 564, 1896.
  4. Arnold, Annal. d. Phys. 61, p. 316, 1897.