This page needs to be proofread.

electrons produced in a vacuum tube. It thus seemed probable that the electron was a constituent of all matter. This view received strong support from measurements of quite a different character. Zeeman in 1897 found that the lines of the spectrum from a source of light exposed in a strong magnetic field were displaced and doubled. Later work has shown that the lines in some cases are trebled, in others sextupled, while, in a few cases, the multiplication is still greater. These results received a general explanation on the radiation theories previously advanced by Lorenz and Larmor. The radiation, emitted from any source, was supposed to result from the orbital or oscillatory motion of the charged parts constituting the atom. Since a moving ion is acted on by an external magnetic field, the motion of the charged ions is disturbed when the source of light is exposed between the poles of a strong magnet. There results a small change in the period of the emitted light, and a bright line in the spectrum is, in consequence, displaced by the action of the magnetic field. According to theory, the small change in the wave-length of the emitted light depends upon the strength of the magnetic field and on the ratio e/m of the charge carried by the ion to its mass. By comparison of the theory with the experimental results, it was deduced that the moving ion carried a negative charge, and that the value of e/m was about 10^7. The charged ion, responsible for the radiation from a luminous body, is thus identical with the electron set free in a vacuum tube.

It thus seems reasonable to suppose that the atoms of all bodies are complex and are built up, in part at least, of electrons, whose apparent mass is very small compared with that of the hydrogen atom. The properties of such disembodied charges has been examined mathematically among others by Larmor, who sees in this conception the ultimate basis of a theory of matter. J. J. Thomson and Lord Kelvin have investigated mathematically certain arrangements of a number of electrons which are stable for small disturbances. This question will be discussed more in detail in section 263.