This page has been validated.

line would be called a straight line." We have deliberately in this enunciation separated the definition from the axiom which it implies. Many proofs such as those of the cases of the equality of triangles, of the possibility of drawing a perpendicular from a point to a straight line, assume propositions the enunciations of which are dispensed with, for they necessarily imply that it is possible to move a figure in space in a certain way.

The Fourth Geometry.—Among these explicit axioms there is one which seems to me to deserve some attention, because when we abandon it we can construct a fourth geometry as coherent as those of Euclid, Lobatschewsky, and Riemann. To prove that we can always draw a perpendicular at a point A to a straight line A B, we consider a straight line A C movable about the point A, and initially identical with the fixed straight line A B. We then can make it turn about the point A until it lies in A B produced. Thus we assume two propositions—first, that such a rotation is possible, and then that it may continue until the two lines lie the one in the other produced. If the first point is conceded and the second rejected, we are led to a series of theorems even stranger than those of Lobatschewsky and Riemann, but equally free from contradiction. I shall give only one of these theorems, and I shall not choose the least remarkable of them. A real straight line may be perpendicular to itself.

Lie's Theorem.—The number of axioms implicitly