This page needs to be proofread.

in Euclid, by prolonging the equal sides AB, AC, to equal distances, and joining the extremities BE, DC.)

FIRST FORMULA.--The sums of equals are equal.

AD and AE are sums of equals by the supposition. Having that mark of equality, they are concluded by this formula to be equal.

SECOND FORMULA.--_Equal straight lines or angles, being applied to one another, coincide._

AC, AB, are within this formula by supposition; AD, AE, have been brought within it by the preceding step. The angle at A considered as an angle of the triangle ABE, and the same angle considered as an angle of the triangle ACD, are of course within the formula. All these pairs, therefore, possess the property which, according to the second formula, is a mark that when applied to one another they will coincide. Conceive them, then, applied to one another, by turning over the triangle ABE, and laying it on the triangle ACD in such a manner that AB of the one shall lie upon AC of the other. Then, by the equality of the angles, AE will lie on AD. But AB and AC, AE and AD are equals; therefore they will coincide altogether, and of course at their extremities, D, E, and B, C.

THIRD FORMULA.--_Straight lines, having their extremities coincident, coincide._

BE and CD have been brought within this formula by the preceding induction; they will, therefore, coincide.

FOURTH FORMULA.--Angles, having their sides coincident, coincide.

The third induction having shown that BE and CD coincide, and the second that AB, AC, coincide, the angles ABE and ACD are thereby brought within the fourth formula, and accordingly coincide.

FIFTH FORMULA.--Things which coincide are equal.

The angles ABE and ACD are brought within this formula by the induction immediately preceding. This train of reasoning being also applicable, mutatis mutandis, to the angles EBC, DCB, these also are brought within the fifth formula. And, finally,

SIXTH FORMULA.--The differences of equals are equal.

The angle ABC being the difference of ABE, CBE, and the angle ACB being the difference of ACD, DCB; which have been proved to be equals; ABC and ACB are brought within the last formula by the whole of the previous process.

The difficulty here encountered is chiefly that of figuring to ourselves the two angles at the base of the triangle ABC as remainders made by cutting one pair of angles out of another, while each pair shall be corresponding angles of triangles which have two sides and the intervening angle equal. It is by this happy contrivance that so many different inductions are brought to bear upon the same particular case. And this not being at all an obvious thought, it may be seen from an example so near the threshold of mathematics, how much scope there may well be for scientific dexterity in the higher branches of that and other sciences, in order so to combine a few simple inductions, as to bring within each of them innumerable cases which are not obviously included in it; and how long, and