This page has been proofread, but needs to be validated.
EXAMPLES OF THE FOUR METHODS.
297

course on the Study of Natural Philosophy, a work replete with happily-selected exemplifications of inductive processes from almost every department of physical science, and in which alone, of all books which I have met with, the four methods of induction are distinctly recognized, though not so clearly characterized and defined, nor their correlation so fully shown, as has appeared to me desirable. The present example is described by Sir John Herschel as "one of the most beautiful specimens" which can be cited "of inductive experimental inquiry lying within a moderate compass;" the theory of dew, first promulgated by the late Dr. Wells, and now universally adopted by scientific authorities. The passages in inverted commas are extracted verbatim from the Discourse.[1]

"Suppose dew were the phenomenon proposed, whose cause we would know. In the first place" we must determine precisely what we mean by dew: what the fact really is whose cause we desire to investigate. "We must separate dew from rain, and the moisture of fogs, and limit the application of the term to what is really meant, which is the spontaneous appearance of moisture on substances exposed in the open air when no rain or visible wet is falling." This answers to a preliminary operation which will be characterized in the ensuing book, treating of operations subsidiary to induction.[2]

"Now, here we have analogous phenomena in the moisture which bedews a cold metal or stone when we breathe upon it; that which appears on a glass of water fresh from the well in hot weather; that which appears on the inside of windows when sudden rain or hail chills the external air; that which runs down our walls when, after a long frost, a warm, moist thaw comes on." Comparing these cases, we find that they all contain the phenomenon which was proposed as the subject of investigation. Now "all these instances agree in one point, the coldness of the object dewed, in comparison with the air in contact with it." But there still remains the most important case of all, that of nocturnal dew: does the same circumstance exist in this case? "Is it a fact that the object dewed is colder than the air? Certainly not, one would at first be inclined to say; for what is to make it so? But . . . . the experiment is easy: we have only to lay a thermometer in contact with the dewed substance, and hang one at a little distance above it, out of reach of its influence. The experiment has been therefore made, the question has been asked, and the answer has been invariably in the affirmative. Whenever an object contracts dew, it is colder than the air."

Here, then, is a complete application of the Method of Agreement, establishing the fact of an invariable connection between the deposition of dew on a surface, and the coldness of that surface compared with the external air. But which of these is cause, and which effect? or are they both effects of something else? On this subject the Method of Agreement can afford us no light: we must call in a more potent method. "We must collect more facts, or, which comes to the same thing, vary the circumstances; since every instance in which the circumstances differ is a fresh fact: and especially, we must note the contrary or negative cases, i.e., where no dew is produced:" a comparison between instances of dew and instances of no dew, being the condition necessary to bring the Method of Difference into play.

"Now, first, no dew is produced on the surface of polished metals, but

  1. Pp. 110, 111.
  2. Infra, book iv., chap. ii., On Abstraction.