This page has been proofread, but needs to be validated.
306
INDUCTION.

it in vibration, observed, that it came much sooner to a state of rest when suspended over a plate of copper, than when no such plate was beneath it. Now, in both cases there were two veræ causæ" (antecedents known to exist) "why it should come at length to rest, viz., the resistance of the air, which opposes, and at length destroys, all motions performed in it; and the want of perfect mobility in the silk thread. But the effect of these causes being exactly known by the observation made in the absence of the copper, and being thus allowed for and subducted, a residual phenomenon appeared, in the fact that a retarding influence was exerted by the copper itself; and this fact, once ascertained, speedily led to the knowledge of an entirely new and unexpected class of relations." This example belongs, however, not to the Method of Residues but to the Method of Difference, the law being ascertained by a direct comparison of the results of two experiments, which differed in nothing but the presence or absence of the plate of copper. To have made it exemplify the Method of Residues, the effect of the resistance of the air and that of the rigidity of the silk should have been calculated a priori, from the laws obtained by separate and foregone experiments.

"Unexpected and peculiarly striking confirmations of inductive laws frequently occur in the form of residual phenomena, in the course of investigations of a widely different nature from those which gave rise to the inductions themselves. A very elegant example may be cited in the unexpected confirmation of the law of the development of heat in elastic fluids by compression, which is afforded by the phenomena of sound. The inquiry into the cause of sound had led to conclusions respecting its mode of propagation, from which its velocity in the air could be precisely calculated. The calculations were performed; but, when compared with fact, though the agreement was quite sufficient to show the general correctness of the cause and mode of propagation assigned, yet the whole velocity could not be shown to arise from this theory. There was still a residual velocity to be accounted for, which placed dynamical philosophers for a long time in great dilemma. At length Laplace struck on the happy idea, that this might arise from the heat developed in the act of that condensation which necessarily takes place at every vibration by which sound is conveyed. The matter was subjected to exact calculation, and the result was at once the complete explanation of the residual phenomenon, and a striking confirmation of the general law of the development of heat by compression, under circumstances beyond artificial imitation."

"Many of the new elements of chemistry have been detected in the investigation of residual phenomena. Thus Arfwedson discovered lithia by perceiving an excess of weight in the sulphate produced from a small portion of what he considered as magnesia present in a mineral he had analyzed. It is on this principle, too, that the small concentrated residues of great operations in the arts are almost sure to be the lurking-places of new chemical ingredients: witness iodine, brome, selenium, and the new metals accompanying platina in the experiments of Wollaston and Tennant. It was a happy thought of Glauber to examine what every body else threw away."[1]

"Almost all the greatest discoveries in Astronomy," says the same author,[2] "have resulted from the consideration of residual phenomena of a quantitative or numerical kind. . . . . It was thus that the grand discovery

  1. Discourse, pp. 156-8, and 171.
  2. Outlines of Astronomy, § 856.