Page:The theory of relativity and its influence on scientific thought.djvu/15

This page has been validated.
RELATIVITY
11

illustrates as well as possible what we mean by the relativity of space.

It is sometimes complained that Einstein's conclusion that the frame of space and time is different for observers with different motions tends to make a mystery of a phenomenon which is not after all intrinsically strange. We have seen that it depends on a contraction of moving objects which turns out to be quite in accordance with Maxwell's classical theory. But even if we have succeeded in explaining it to ourselves intelligibly, that does not make the statement any the less true! A new result may often be expressed in various ways; one mode of statement may sound less mysterious; but another mode may show more clearly what will be the consequences in amending and extending our knowledge. It is for the latter reason that we emphasize the relativity of space—that lengths and distances differ according to the observer implied. Distance and duration are the most fundamental terms in physics; velocity, acceleration, force, energy, and so on, all depend on them; and we can scarcely make any statement in physics without direct or indirect reference to them. Surely then we can best indicate the revolutionary consequences of what we have learnt by the statement that distance and duration, and all the physical quantities derived from them, do not as hitherto supposed refer to anything absolute in the external world, but are relative quantities which alter when we pass from one observer to another with different motion. The consequence in physics of the discovery that a yard is not an absolute chunk of space, and that what is a yard for one observer may be eighteen inches for another observer, may be compared with the consequences in economics of the discovery that a pound sterling is not an absolute quantity of wealth, and in certain circumstances may