Russell & Whitehead's Principia Mathematica/Introduction

Introduction.

The mathematical logic which occupies Part I of the present work has been constructed under the guidance of three different purposes. In the first place, it aims at effecting the greatest possible analysis of the ideas with which it deals and of the processes by which it conducts demonstrations, and at diminishing to the utmost the number of the undefined ideas and undemonstrated propositions (called respectively primitive ideas and primitive propositions) from which it starts. In the second place, it is framed with a view to the perfectly precise expression, in its symbols, of mathematical propositions: to secure such expression, and to secure it in the simplest and most convenient notation possible, is the chief motive in the choice of topics. In the third place, the system is specially framed to solve the paradoxes which, in recent years, have troubled students of symbolic logic and the theory of aggregates; it is believed that the theory of types, as set forth in what follows, leads both to the avoidance of contradictions, and to the detection of the precise fallacy which has given rise to them.

Of the above three purposes, the first and third often compel us to adopt methods, definitions, and notations which are more complicated or more difficult than they would be if we had the second object alone in view. This applies especially to the theory of descriptive expressions (*14 and *30) and to the theory of classes and relations (*20 and *21). On these two points, and to a lesser degree on others, it has been found necessary to make some sacrifice of lucidity to correctness. The sacrifice is, however, in the main only temporary: in each case, the notation ultimately adopted, though its real meaning is very complicated, has an apparently simple meaning which, except at certain crucial points, can without danger be substituted in thought for the real meaning. It is therefore convenient, in a preliminary explanation of the notation, to treat these apparently simple meanings as primitive ideas, i.e. as ideas introduced without definition. When the notation has grown more or less familiar, it is easier to follow the more complicated explanations which we believe to be more correct. In the body of the work, where it is necessary to adhere rigidly to the strict logical order the easier order of development could not be adopted; it is therefore given in the Introduction. The explanations given in Chapter I of the Introduction are such as place lucidity before correctness; the full explanations are partly supplied in succeeding Chapters of the Introduction, partly given in the body of the work.

The use of a symbolism, other than that of words, in all parts of the book which aim at embodying strictly accurate demonstrative reasoning, has been forced on us by the consistent pursuit of the above three purposes. The reasons for this extension of symbolism beyond the familiar regions of number and allied ideas are many:

(1) The ideas here employed are more abstract than those familiarly considered in language. Accordingly there are no words which are used mainly in the exact consistent senses which are required here. Any use of words would require unnatural limitations to their ordinary meanings, which would be in fact more difficult to remember consistently than are the definitions of entirely new symbols.

(2) The grammatical structure of language is adapted to a wide variety of usages. Thus it possesses no unique simplicity in representing the few simple, though highly abstract, processes and ideas arising in the deductive trains of reasoning employed here. In fact the very abstract simplicity of the ideas of this work defeats language. Language can represent complex ideas more easily. The proposition "a whale is big" represents language at its best, giving terse expression to a complicated fact; while the true analysis of "one is a number" leads, in language, to an intolerable prolixity. Accordingly terseness is gained by using a symbolism especially designed to represent the ideas and processes of deduction which occur in this work.

(3) The adaptation of the rules of the symbolism to the processes of deduction aids the intuition in regions too abstract for the imagination readily to present to the mind the true relation between the ideas employed. For various collocations of symbols become familiar as representing important collocations of ideas; and in turn the possible relations—according to the rules of the symbolism—between these collocations of symbols become familiar, and these further collocations represent still more complicated relations between the abstract ideas. And thus the mind is finally led to construct trains of reasoning in regions of thought in which the imagination would be entirely unable to sustain itself without symbolic help. Ordinary language yields no such help. Its grammatical structure does not represent uniquely the relations between the ideas involved. Thus, "a whale is big" and "one is a number" both look alike, so that the eye gives no help to the imagination.

(4) The terseness of the symbolism enables a whole proposition to be represented to the eyesight as one whole, or at most in two or three parts divided where the natural breaks, represented in the symbolism, occur. This is a humble property, but is in fact very important in connection with the advantages enumerated under the heading (3).

(5) The attainment of the first-mentioned object of this work, namely the complete enumeration of all the ideas and steps in reasoning employed in mathematics, necessitates both terseness and the presentation of each proposition with the maximum of formality in a form as characteristic of itself as possible.

Further light on the methods and symbolism of this book is thrown by a slight consideration of the limits to their useful employment:

(α) Most Mathematical investigation is concerned not with the analysis of the complete process of reasoning, but with the presentation of such an abstract of the proof as is sufficient to convince a properly instructed mind. For such investigations the detailed presentation of the steps in reasoning is of course unnecessary, provided that the detail is carried far enough to guard against error. In this connection it may be remembered that the investigations of Weierstrass and others of the same school have shown that, even in the common topics of mathematical thought, much more detail is necessary than previous generations of mathematicians had anticipated.

(β) In proportion as the imagination works easily in any region of thought, symbolism (except for the express purpose of analysis) becomes only necessary as a convenient shorthand writing to register results obtained without its help. It is a subsidiary object of this work to show that, with the aid of symbolism, deductive reasoning can be extended to regions of thought not usually supposed amenable to mathematical treatment. And until the ideas of such branches of knowledge have become more familiar, the detailed type of reasoning, which is also required for the analysis of the steps, is appropriate to the investigation of the general truths concerning these subjects.