HYPOTHESIS (from Gr. ὑποτιθέναι, to put under; cf. Lat. suppositio, from sub-ponere), in ordinary language, an explanation, supposition or assumption, which is put forward in the absence of ascertained facts or causes. Both in ordinary life and in the acquisition of scientific knowledge hypothesis is all-important. A detective’s work consists largely in forming and testing hypothesis. If an astronomer is confronted by some phenomenon which has no obvious explanation he may postulate some set of conditions which from his general knowledge of the subject would or might give rise to the phenomenon in question; he then tests his hypothesis until he discovers whether it does or does not conflict with the facts. An example of this process is that of the discovery of the planet Neptune: certain perturbations of the orbit of Uranus had been observed, and it was seen that these could be explained on the hypothesis of the existence of a then unknown planet, and this hypothesis was verified by actual observation. The progress of inductive knowledge is by the formation of successive hypotheses, and it frequently happens that the demolition of one or even many hypotheses is the direct road to a new and accurate hypothesis, i.e. to fresh knowledge. A hypothesis may, therefore, turn out to be entirely wrong, yet it may be of the greatest practical use.

The recognition of the importance of hypotheses has led to various attempts at drawing up exact rules for their formation, but logicians are generally agreed that only very elementary principles can be laid down. Thus a hypothesis must contain nothing which is at variance with known facts or principles: it should not postulate conditions which cannot be verified empirically. J. S. Mill (Logic III. xiv. 4) laid down the principle that a hypothesis is not “genuinely scientific” if it is “destined always to remain a hypothesis”: it must “be of such a nature as to be either proved or disproved by comparison with observed facts”: in the same spirit Bacon said that in searching for causes in nature “Deum semper excipimus.” Mill’s principle, though sound in the abstract, has, except in a few cases, little practical value in determining the admissibility of hypotheses, and in practice any rule which tends to discourage hypothesis is in general undesirable. The most satisfactory check on hypothesis is expert knowledge in the particular field of research by which rigorous tests may be applied. This test is roughly of two kinds, first by the ultimate principles or presuppositions on which a particular branch of knowledge rests, and second by the comparison of correlative facts. Useful light is shed on this distinction by Lotze, who contrasts (Logic, § 273) postulates (“absolutely necessary assumptions without which the content of the observation with which we are dealing would contradict the laws of our thought”) with hypotheses, which he defines as conjectures, which seek “to fill up the postulate thus abstractly stated by specifying the concrete causes, forces or processes, out of which the given phenomenon really arose in this particular case, while in other cases maybe the same postulate is to be satisfied by utterly different though equivalent combinations of forces or active elements.” Thus a hypothesis may be ruled out by principles or postulates without any reference to the concrete facts which belong to that division of the subject to explain which the hypothesis is formulated. A true hypothesis, therefore, seeks not merely to connect or colligate two separate facts, but to do this in the light of and subject to certain fundamental principles. Various attempts have been made to classify hypotheses and to distinguish “hypothesis” from a “theory” or a mere “conjecture”: none of these have any great practical importance, the differences being only in degree, not in kind.

The adjective “hypothetical” is used, in the same sense, both loosely in contradistinction to “real” or “actual,” and technically in the phrases “hypothetical judgment” and “hypothetical syllogism.” (See Logic and Syllogism.)

See Naville, La Logique de l’hypothèse (1880), and textbooks of logic, e.g. those of Jevons, Bosanquet, Joseph; Liebmann, Der Klimax d. Theorien.