A Preliminary Discourse on the Study of Natural Philosophy/Part 2, chap. 3

CHAP. III.
Of the State of Physical Science in General, previous to the Age of Galileo and Bacon.

(96.) It is to our immortal countryman Bacon that we owe the broad announcement of this grand and fertile principle; and the developement of the idea, that the whole of natural philosophy consists entirely of a series of inductive generalizations, commencing with the most circumstantially stated particulars, and carried up to universal laws, or axioms, which comprehend in their statements every subordinate degree of generality, and of a corresponding series of inverted reasoning from generals to particulars, by which these axioms are traced back into their remotest consequences, and all particular propositions deduced from them; as well those by whose immediate consideration we rose to their discovery, as those of which we had no previous knowledge. In the course of this descent to particulars, we must of necessity encounter all those facts on which the arts and works that tend to the accommodation of human life depend, and acquire thereby the command of an unlimited practice, and a disposal of the powers of nature co-extensive with those powers themselves. A noble promise, indeed, and one which ought, surely, to animate us to the highest exertion of our faculties; especially since we have already such convincing proof that it is neither vain nor rash, but, on the contrary, has been, and continues to be, fulfilled, with a promptness and liberality which even its illustrious author in his most sanguine mood would have hardly ventured to anticipate.

(97.) Previous to the publication of the Novum Organum of Bacon, natural philosophy, in any legitimate and extensive sense of the word, could hardly be said to exist. Among the Greek philosophers, of whose attainments in science alone, in the earlier ages of the world, we have any positive knowledge, and that but a very limited one, we are struck with the remarkable contrast between their powers of acute and subtle disputation, their extraordinary success in abstract reasoning, and their intimate familiarity with subjects purely intellectual, on the one hand; and, on the other, with their loose and careless consideration of external nature, their grossly illogical deductions of principles of sweeping generality from few and ill-observed facts, in some cases; and their reckless assumption of abstract principles having no foundation but in their own imaginations, in others; mere forms of words, with nothing corresponding to them in nature, from which, as from mathematical definitions, postulates, and axioms, they imagined that all phenomena could be derived, all the laws of nature deduced. Thus, for instance, having settled it in their own minds, that a circle is the most perfect of figures, they concluded, of course, that the movements of the heavenly bodies must all be performed in exact circles, and with uniform motions; and when the plainest observation demonstrated the contrary, instead of doubting the principle, they saw no better way of getting out of the difficulty than by having recourse to endless combinations of circular motions to preserve their ideal perfection.

(98.) Undoubtedly among the Greek philosophers were many men of transcendent talents and virtues, the ornaments of their species, and justly entitled to the veneration of all posterity; but regarded as a body they can hardly be considered otherwise than as a knot of disputatious candidates for popular favour, too busy in maintaining their ascendency over their followers and admirers, by an ostentatious display of superior knowledge, to have the leisure (had they always the inclination) to base their pretensions on a deep and sure foundation, and yet too sensible of the disgrace and inconvenience of failure, not to defend their dogmas, however shallow, when once promulgated, against their keen and sagacious opponents, by every art of sophism or appeal to passion. Hence the crudities and chimerical views with which their systems of philosophy, both natural and moral, were overloaded; their endless disputes about verbal subtleties, and, last and worst, the proud assumption with which they sheltered ignorance and indolence under the screen of unintelligible jargon or dogmatical assertion. Perhaps, however, this character applies rather to the later than to the earlier of the Greek philosophers. The spirit of rational enquiry into nature seems, if we can judge from the uncertain and often contradictory notices handed down to us of their tenets, to have been far more alive, and less warped by this vain and arrogant turn, then than at a later period. We know not now what was the precise meaning attached by Thales to his opinion, that water was the origin of all things; but modern geologists will not be at a loss to conceive how an observant traveller might become impressed with this notion, without having recourse to the mystic records of Egypt or Chaldea. His ideas of eclipses and of the nature of the moon were sound; and his prediction of an eclipse of the sun, in particular, was attended with circumstances so remarkable as to have made it a matter of important investigation to modern astronomers. Anaxagoras, among a number of crude and imperfectly explained notions, speculated rationally enough on the cause of the winds and of the rainbow, and less absurdly on earthquakes than many modern geologists have done, and appears generally to have had his attention alive to nature, and his mind open to just reasoning on its phenomena; while Pythagoras, whether he reasoned it out for himself, or borrowed the notion from Egypt or India, had attained a just conception of the general disposition of the parts of the solar system, and the place held by the earth in it; nay, according to some accounts, had even raised his views so far as to speculate on the attraction of the sun as the bond of its union.

(99.) But the successors of these bonâ fide enquirers into nature debased the standard of truth; and, taking advantage of the credit justly attached to their discoveries, renounced the modest character of learners, and erected themselves into teachers, and, to maintain their pretensions to this character, adopted the tone of men who had nothing further to learn. Unfortunately for true science, the national character gave every encouragement to pretensions of this kind. That restless craving after novelty, which distinguished the Greeks in their civil and political relations, pursued them into their philosophy. Whatever speculations were only ingenious and new had irresistible charms; and the teacher who could embody a clever thought in elegant language, or at once save his followers and himself the trouble of thinking or reasoning, by bold assertion, was too often induced to acquire cheaply the reputation of superior knowledge, snatch a few superficial notions from the most ordinary and obvious facts, envelope them in a parade of abstruse words, declare them the primary and ultimate principles of all things, and denounce as absurd and impious all opinions opposed to his own.

(100.) In this war of words the study of nature was neglected, and an humble and patient enquiry after facts altogether despised, as unworthy of the high priori ground a true philosopher ought to take. It was the radical error of the Greek philosophy to imagine that the same method which proved so eminently successful in mathematical, would be equally so in physical, enquiries, and that, by setting out from a few simple and almost self-evident notions, or axioms, every thing could be reasoned out. Accordingly, we find them constantly straining their invention to discover these principles, which were to prove so pregnant. One makes fire the essential matter and origin of the universe; another, air; a third, discovers the key to every difficulty, and the explanation of all phenomena, in the "το απειρον" or infinitude of things; a fourth, in the το ὁν and the το μη ὁν, that is to say, in entity and nonentity;—till at length an authority, which was destined to command opinions for nearly two thousand years, settled this important point, by deciding, that matter, form, and privation, were to be considered the principles of all things.

(101.) It were to do injustice to Aristotle, however, to judge of him by such a sample of his philosophy. He, at least, saw the necessity of having recourse to nature for something like principles of physical science; and, as an observer, a collector and recorder of facts and phenomena, stood without an equal in his age. It was the fault of that age, and of the perverse and flimsy style of verbal disputation which had infected all learning, rather than his own, that he allowed himself to be contented with vague and loose notions drawn from general and vulgar observation, in place of seeking carefully, in well arranged and thoroughly considered instances, for the true laws of nature. His voluminous works, on every department of human knowledge existing in his time, have nearly all perished. From his work on animals, which has descended to us, we are, however, enabled to appreciate his powers of observation; and a parallel drawn by an eminent Oxford professor between his classifications and those of the most illustrious of living naturalists, shows him to have attained a view of animated nature in a remarkable degree comprehensive, and which contrasts strikingly with the confusion, vagueness, and assumption of his physical opinions and dogmas. In these it is easy to recognize a mind not at home, and an impression of the necessity of saying something learned and systematic, without knowing what to say. Thus, he divides motions into natural and unnatural; the natural motion of fire and light bodies being upwards, those of heavy downwards, each seeking its kindred nature in the heavens and the earth. Thus, too, the immediate impressions made on us by external objects, such as hardness, colour, heat, &c. are referred at once, in the Aristotelian philosophy, to occult qualities, in virtue of which they are as they are, and beyond which it is useless to enquire.[1] Of course there will occur a limit beyond which it is useless for merely human faculties to enquire; but where that limit is placed, experience alone can teach us; and at least to assert that we have attained it, is now universally recognized as the sure criterion of dogmatism.

(102.) In the early ages of the church, the writings of Aristotle were condemned, as allowing too much to reason and sense; and even so late as the twelfth century they were sought out and burned, and their readers excommunicated. By degrees, however, the extreme injustice of this impeachment of their character was acknowledged: they became the favourite study of the schoolmen, and furnished the keenest weapons of their controversy, being appealed to in all disputes as of sovereign authority; so that the slightest dissent from any opinion of the "great master," however absurd or unintelligible, was at once drowned by clamour, or silenced by the still more effectual argument of bitter persecution. If the logic of that gloomy period could be justly described as "the art of talking unintelligibly on matters of which we are ignorant," its physics might, with equal truth, be summed up in a deliberate preference of ignorance to knowledge, in matters of every day's experience and use.

(103.) In "this opake of nature and of soul," the perverse activity of the alchemists from time to time struck out a doubtful spark[2]; and our illustrious countryman, Roger Bacon, shone out at the obscurest moment, like an early star predicting dawn. It was not, however, till the sixteenth century that the light of nature began to break forth with a regular and progressive increase. The vaunts of Paracelsus of the power of his chemical remedies and elixirs, and his open condemnation of the ancient pharmacy, backed as they were by many surprising cures, convinced all rational physicians that chemistry could furnish many excellent remedies, unknown till that time[3], and a number of valuable experiments began to be made by physicians and chemists, desirous of discovering and describing new chemical remedies. The chemical and metallurgic arts, exercised by persons empirically acquainted with their secrets, began to be seriously studied with a view to the acquisition of rational and useful knowledge, and regular treatises on branches of natural science at length to appear. George Agricola, in particular, devoted himself with ardour to the study of mineralogy and metallurgy in the mining districts of Bohemia and Schemnitz, and published copious and methodical accounts of all the facts within his knowledge: and our countryman, Dr. Gilbert of Colchester, in 1590, published a treatise on magnetism, full of valuable facts and experiments, ingeniously reasoned on; and he likewise extended his enquiries to a variety of other subjects, in particular to electricity.

(104.) But, as the decisive mark of a great commencing change in the direction of the human faculties, astronomy, the only science in which the ancients had made any real progress, and ascended to any thing like large and general conceptions, began once more to be studied in the best spirit of a candid philosophy; and the Copernican or Pythagorean system arose or revived, and rapidly gained advocates. Galileo at length appeared, and openly attacked and refuted the Aristotelian dogmas respecting motion, by direct appeal to the evidence of sense, and by experiments of the most convincing kind. The persecutions which such a step drew upon him, the record of his perseverance and sufferings, and the ultimate triumph of his opinions and reasonings, have been too lately and too well related[4] to require repetition here.

(105.) By the discoveries of Copernicus, Kepler, and Galileo, the errors of the Aristotelian philosophy were effectually overturned on a plain appeal to the facts of nature; but it remained to show on broad and general principles, how and why Aristotle was in the wrong; to set in evidence the peculiar weakness of his method of philosophizing, and to substitute in its place a stronger and better. This important task was executed by Francis Bacon, Lord Verulam, who will, therefore, justly be looked upon in all future ages as the great reformer of philosophy, though his own actual contributions to the stock of physical truths were small, and his ideas of particular points strongly tinctured with mistakes and errors, which were the fault rather of the general want of physical information of the age than of any narrowness of view on his own part; and of this he was fully aware. It has been attempted by some to lessen the merit of this great achievement, by showing that the inductive method had been practised in many instances, both ancient and modern, by the mere instinct of mankind; but it is not the introduction of inductive reasoning, as a new and hitherto untried process, which characterises the Baconian philosophy, but his keen perception, and his broad and spirit-stirring, almost enthusiastic, announcement of its paramount importance, as the alpha and omega of science, as the grand and only chain for the linking together of physical truths, and the eventual key to every discovery and every application. Those who would deny him his just glory on such grounds would refuse to Jenner or to Howard their civic crowns, because a few farmers in a remote province had, time out of mind, been acquainted with vaccination, or philanthropists, in all ages, had occasionally visited the prisoner in his dungeon.

(106.) An immense impulse was now given to science, and it seemed as if the genius of mankind, long pent up, had at length rushed eagerly upon Nature, and commenced, with one accord, the great work of turning up her hitherto unbroken soil, and exposing the treasures so long concealed. A general sense now prevailed of the poverty and insufficiency of existing knowledge in matters of fact; and, as information flowed fast in, an era of excitement and wonder commenced, to which the annals of mankind had furnished nothing similar. It seemed, too, as if Nature herself seconded the impulse; and, while she supplied new and extraordinary aids to those senses which were henceforth to be exercised in her investigation,—while the telescope and the microscope laid open the infinite in both directions,—as if to call attention to her wonders, and signalise the epoch, she displayed the rarest, the most splendid and mysterious, of all astronomical phenomena, the appearance and subsequent total extinction of a new and brilliant fixed star twice within the lifetime of Galileo himself.[5]

(107.) The immediate followers of Bacon and Galileo ransacked all nature for new and surprising facts, with something of that craving for the marvellous, which might be regarded as a remnant of the age of alchemy and natural magic, but which, under proper regulation, is a most powerful and useful stimulus to experimental enquiry. Boyle, in particular, seemed animated by an enthusiasm of ardour, which hurried him from subject to subject, and from experiment to experiment, without a moment's intermission, and with a sort of undistinguishing appetite; while Hooke (the great contemporary, and almost the worthy rival, of Newton) carried a keener eye of scrutinising reason into a range of research even yet more extensive. As facts multiplied, leading phenomena became prominent, laws began to emerge, and generalizations to commence; and so rapid was the career of discovery, so signal the triumph of the inductive philosophy, that a single generation and the efforts of a single mind sufficed for the establishment of the system of the universe, on a basis never after to be shaken.

(108.) We shall now endeavour to enumerate and explain in detail the principal steps by which legitimate and extensive inductions are arrived at, and the processes by which the mind, in the investigation of natural laws, purges itself by successive degrees of the superfluities and incumbrances which hang about particulars, and obscure the perception of their points of resemblance and connection. We shall state the helps which may be afforded us, in a work of so much thought and labour, by a methodical course of proceeding, and by a careful notice of those means which have at any time been found successful, with a view to their better understanding and adaptation to other cases: a species of mental induction of no mean utility and extent in itself; inasmuch as by pursuing it alone we can attain a more intimate knowledge than we actually possess of the laws which regulate our discovery of truth, and of the rules, so far as they extend, to which invention is reducible. In doing this, we shall commence at the beginning, with experience itself, considered as the accumulation of the knowledge of individual objects and facts.

  1. Galileo exposes unsparingly the Aristotelian style of reasoning. The reader may take the following from him as a specimen of its quality. The object is to prove the immutability and incorruptibility of the heavens; and thus it is done:—

    VIII. Mutation is either generation or corruption.

    VIII. Generation and corruption only happen between contraries.

    VIII. The motions of contraries are contrary.

    IIIV. The celestial motions are circular.

    IIIV. Circular motions have no contraries.

    α. Because there can be but three simple motions.

    1. To a centre.
    2. Round a centre.
    3. From a centre.

    β. Of three things, one only can be contrary to one.

    γ. But a motion to a centre is manifestly the contrary to a motion from a centre.

    δ. Therefore a motion round a centre (i. e. a circular motion) remains without a contrary.

    IIVI. Therefore celestial motions have no contraries—therefore among celestial things there are no contraries—therefore the heavens are eternal, immutable, incorruptible, and so forth.

    It is evident that all this string of nonsense depends on the excessive vagueness of the notions of generation, corruption, contrariety, &c. on which the changes are rung.—See Galileo, Systema Cosmicum, Dial. i. p. 30.

  2. Macquer justly observes, that the alchemists would have rendered essential service to chemistry had they only related their unsuccessful experiments as clearly as they have obscurely related those which they pretend to have been successful.—Macquer's Dictionary of Chemistry, i. x.
  3. Paracelsus performed most of these cures by mercury and opium, the use of which latter drug he had learned in Turkey. Of mercurial preparations the physicians of his time were ignorant, and of opium they were afraid, as being "cold in the fourth degree." Tartar was likewise a great favourite of Paracelsus, who imposed on it that name, "because it contains the water, the salt, the oil, and the acid, which burn the patient as hell does:" in short, a kind of counterbalance to his opium.
  4. See the Life of Galileo Galilei, by Mr. Drinkwater, with Illustrations of the Advancement of Experimental Philosophy.
  5. The temporary star in Cassiopeia observed by Cornelius Gemma, in 1572, was so bright as to be seen at noon-day. That in Serpentarius, first seen by Kepler in 1604, exceeded in brilliancy all the other stars and planets.