3058281An unsinkable Titanic; every ship its own lifeboatJohn Bernard Walker
CHAPTER III

EVERY SHIP ITS OWN LIFEBOAT

Say what we will, it cannot be denied that the lifeboat is a makeshift. The long white line of boats, conspicuous on each side of the upper deck of a large passenger ship, is, in a certain sense, a confession of failure—an admission on the part of the shipbuilder that, in spite of all that he has done in making travel by sea fast and comfortable, he has not yet succeeded in making it safe.

Progress in shipbuilding and especially in the construction of fast and luxuriously appointed ships has been simply phenomenal, particularly during the past two decades. There is no art in the whole field of engineering that has made such rapid and astonishing strides; and it is not stretching the point too far to assert that man's mastery of the ocean is the greatest engineering triumph of all time.

The fury of the elements, as shown in a heavy storm at sea, has always been regarded as one of the most majestic and terrifying exhibitions of the forces of nature. When the sailing packet was struck by the full fury of a gale, the skipper lay to, thankful if he could survive the racket, without carrying away boats, bulwarks, and deck gear. Frequently, with canvas blown out of the bolt ropes, he was obliged to run under bare poles, at the imminent risk of being swamped under the weight of some following sea. For many a decade, even in the era of the steamship, it was necessary, when heading into a heavy sea, to slow down the engines, maintaining only sufficient speed to give steerage way. To-day, so great are the weight and engine power that the giant steamship, if the captain is willing to risk some minor mishaps to her upper works, may be driven resistlessly along the appointed lines of travel regardless of wind and sea. So far as the loss of the ship from heavy weather is concerned, man has obtained complete mastery of the ocean.

The writer well remembers a trip to the westward on one of the subsidised mail steamers, built to naval requirements, which was made at a time when the ship was striving to accomplish the average speed of 24 1-2 knots

This ship, with 34 compartments below a water-tight steel deck, would serve as its own lifeboat in the event of collision.

The 44,000-Ton, 25½-Knot Lusitania

for the round trip from England to America, which was necessary before she could claim the government subsidy. In the run to the eastward, the ship had averaged for the whole passage 25 knots; therefore to win the coveted prize, it was necessary, on the return passage to New York, to maintain an average of 24 knots. As it happened, two hours out from Queenstown it began to blow hard from the southwest, and for the next four days the wind, veering from southwest to northwest, never fell below the strength of half a gale. On the fourth day out the wind rose to full cyclonic force, and against the most tempestuous weather that the North Atlantic can show, the ship was driven for twenty-four hours into what the captain's log-book designated as "enormous head seas." She averaged a speed of 23 knots for the whole four days of heavy weather, and came through the ordeal without starting a single rivet, or showing any signs of undue strain in her roughly-handled hull.

The large and powerful passenger steamer of to-day is proof against fatal damage due to wind and sea. True it is that these ships occasionally reach New York after a stormy passage, with porthole glasses broken, windows smashed, and rails and other light fittings carried away; but these are minor damages which in no way affect the integrity of the ship as a whole.

If, then, the shipbuilder has made such wonderful strides in the strength of his construction and in the development of engine power, is it not a strange anomaly that he should have so far failed in his attempt to provide against sinking through collision, as to be under the necessity of advertising the fact, by crowding the topmost deck with appliances for saving the lives of the passengers when the ship goes down?

But it will be objected that, even if the ship were made so far unsinkable that she might act as her own lifeboat, there would yet remain the risk of her destruction by fire, and that, if a fierce conflagration occurred, the passengers would have to abandon ship and take to the boats. The objection is well made, and if it be possible to introduce structural features which will render ships both fireproof and unsinkable, the thing should be done.

It is sincerely to be hoped that one outcome of the present world-wide interest in the subject of safety at sea, will be a searching investigation of the whole question of fire protection. In some of the first-class passenger ships, notably those of the leading German companies, the subject has been given the attention which it merits; but there is no doubt that a large majority of the vessels engaged in the passenger-carrying trade contain no fire protection of a structural nature; that is to say, the spaces reserved for passenger accommodations are not laid out with any view to limiting the ravages of fire. On most of these ships a fire which once obtained strong headway might sweep through the decks devoted to passenger accommodations, without meeting with any fireproof wall to stay its progress.

Now the most effective protection against a conflagration on board ship is to apply the same method of localisation which is used to such good effect in limiting the inflow of water resulting from collision. The steel bulkhead and the steel deck, acting as fire screens, may be made as effective in limiting the area of a fire as they are in limiting the area of flooding.

The passenger decks should be intersected at frequent intervals by steel bulkheads, extending from side to side of the ship and carried up to include the topmost tier of staterooms. Where the alleyways intersect the bulkheads, fireproof doors would afford all the necessary means of communication. The provision of many such bulkheads, coupled with the installation of an ample fire-main service and the faithful practice of fire-drills, would render the loss of a ship by fire practically impossible.

The pathetic reluctance of her passengers to leave the Titanic for the lifeboats was justified, surely, by the seeming security of the one and frailty of the other. Perfectly natural was their belief that the mighty ship would survive, at least until the rescuing steamers should reach her vicinity and render the transfer of passengers a safe operation. Did not the Republic remain afloat for many hours after a collision scarcely less terrible than this, and was not the Titanic twice her size and, therefore, good as a lifeboat for many an hour to come?

In considering the excellent service rendered by the lifeboats of the Republic and the Titanic, it should be borne in mind that the weather

Provisioning the Boats During a Boat Drill

Courtesy of Scientific American.

Loading and Lowering Boats, Stowed Athwartships

conditions happened to be very favourable. The launching of lifeboats in rough weather is a difficult and perilous operation. Frequently the

Courtesy of Scientific American.

Boat Deck of Titanic, Showing, in Black, Plan for Stowing Extra Boats, to Bring Total Accommodations Up to 3,100 Persons

sinking ship will have a heavy list; if she lists to starboard, the boats on that side can be launched well clear of the ship, but the boats on the port or higher side cannot be so launched. As they are lowered, they will come in contact with the side of the ship and be damaged or capsized. Furthermore, should the ship be rolling, the boats are liable to be swung violently against the vessel and their sides may be crushed in or heavily strained, rendering them unseaworthy. Had a heavy sea, nay, even a moderate sea, been running at the time of the Titanic disaster, how long would her heavily loaded boats have survived in water that was infested with ice floes? Their helplessness will be more evident when we remember that they weighed between one and two tons, and that when they were loaded down with sixty-five people, the total weight must have been about six tons. Now a craft of six tons' displacement requires considerable handling, and the two or three sailors allotted to each boat, jammed in, as they were, among crowded passengers, would have been powerless in heavy weather to keep the boat from broaching broadside to the sea and capsizing.

The demand, then, for unsinkable ships is justified by the fact that the lifeboat is at best but a poor makeshift—that to put several thousand people adrift in mid-ocean is to expose them to the risk of ultimate death by starvation or drowning.

However, in view of the fact that ninety-five passenger ships out of every hundred are built with the single skin, low bulkheads, and non-watertight decks, which characterised the Titanic, it is certain that the cry: "A lifeboat seat for every passenger" is fully justified. The problem of housing the large number that would be required presents no insuperable difficulties, and there are several alternative plans on which the boats might be disposed. On page 45 will be found a proposed arrangement,

Courtesy of Scientific American.

The Elaborate Installation of Telegraphs, Telephones, Voice-tubes, Etc., on the Bridge of an Ocean Liner

reproduced by the courtesy of the "Scientific American," which shows in white the twenty boats actually carried by the Titanic, and in black the additional boats which would be necessary to increase the total accommodation to about 3,100 people. This plan would necessitate the sacrifice of some of the deck-house structures. Between each pair of smokestacks two lines of four boats each are stowed athwartships. The boat chocks are provided with gunmetal wheels, which run in transverse tracks sunk in the deck. Along each side of the boat-deck there is a continuous line of boats.

Another plan would be to take advantage of the full capacity of the Welin davit with which the Titanic was equipped, which is capable of handling two or even three boats stowed abreast. Three lines of boats carried on each side of the long boat-deck of a modern liner would provide ample accommodation for every person on board.

But we repeat—and the point cannot be too strongly urged—that however complete the lifeboat accommodation may be, it is at the best a makeshift.

The demand that every ship that is launched in the future shall be so far unsinkable as to serve as its own lifeboat in case of serious disaster is perfectly reasonable; for there are certain first-class transatlantic liners in service to-day—notably in certain leading English and German lines—which fulfil this condition. Considerations both of humanity and self-interest should lead to the adoption of similar principles of construction by every passenger steamship company. It is possible that the time will come, and it may indeed be very close at hand, when the most attractive page in the illustrated steamship pamphlet will be one containing plans of the ships, in which the safeguards against sinking—such as side bunkers, high bulkheads, and watertight decks—are clearly delineated.