Experience and Prediction/I/§ 1. The three tasks of epistemology

Experience and Prediction
Hans Reichenbach
4500720Experience and PredictionHans Reichenbach

CHAPTER I

MEANING

§ 1. The three tasks of epistemology

Every theory of knowledge must start from knowledge as a given sociological fact. The system of knowledge as it has been built by generations of thinkers, the methods of acquiring knowledge used in former times or used in our day, the aims of knowledge as they are expressed by the procedure of scientific inquiry, the language in which knowledge is expressed—all are given to us in the same way as any other sociological fact, such as social customs or religious habits or political institutions. The basis available for the philosopher does not differ from the basis of the sociologist or psychologist; this follows from the fact that, if knowledge were not incorporated in books and speeches and human actions, we never would know it. Knowledge, therefore, is a very concrete thing; and the examination into its properties means studying the features of a sociological phenomenon.

We shall call the first task of epistemology its descriptive task—the task of giving a description of knowledge as it really is. It follows, then, that epistemology in this respect forms a part of sociology. But it is only a special group of questions concerning the sociological phenomenon “knowledge” which constitutes the domain of epistemology. There are such questions as “What is the meaning of the concepts used in knowledge?” “What are the presuppositions contained in the method of science?” “How do we know whether a sentence is true, and do we know that at all?” and many others; and although, indeed, these questions concern the sociological phenomenon “science,” they are of a very special type as compared with the form of questions occurring in general sociology. What makes this difference? It is usually said that this is a difference of internal and external relations between those human utterances the whole of which is called “knowledge.” Internal relations are such as belong to the content of knowledge, which must be realized if we want to understand knowledge, whereas external relations combine knowledge with utterances of another kind which do not concern the content of knowledge. Epistemology, then, is interested in internal relations only, whereas sociology, though it may partly consider internal relations, always blends them with external relations in which this science is also interested. A sociologist, for instance, might report that astronomers construct huge observatories containing telescopes in order to watch the stars, and in such a way the internal relation between telescopes and stars enters into a sociological description. The report on contemporary astronomy begun in the preceding sentence might be continued by the statement that astronomers are frequently musical men, or that they belong in general to the bourgeois class of society; if these relations do not interest epistemology, it is because they do not enter into the content of science—they are what we call external relations.

Although this distinction does not furnish a sharp line of demarcation, we may use it for a first indication of the design of our investigations. We may then say the descriptive task of epistemology concerns the internal structure of knowledge and not the external features which appear to an observer who takes no notice of its content.

We must add now a second distinction which concerns psychology. The internal structure of knowledge is the system of connections as it is followed in thinking. From such a definition we might be tempted to infer that epistemology is the giving of a description of thinking processes; but that would be entirely erroneous. There is a great difference between the system of logical interconnections of thought and the actual way in which thinking processes are performed. The psychological operations of thinking are rather vague and fluctuating processes; they almost never keep to the ways prescribed by logic and may even skip whole groups of operations which would be needed for a complete exposition of the subject in question. That is valid for thinking in daily life, as well as for the mental procedure of a man of science, who is confronted by the task of finding logical interconnections between divergent ideas about newly-observed facts; the scientific genius has never felt bound to the narrow steps and prescribed courses of logical reasoning. It would be, therefore, a vain attempt to construct a theory of knowledge which is at the same time logically complete and in strict correspondence with the psychological processes of thought.

The only way to escape this difficulty is to distinguish carefully the task of epistemology from that of psychology. Epistemology does not regard the processes of thinking in their actual occurrence; this task is entirely left to psychology. What epistemology intends is to construct thinking processes in a way in which they ought to occur if they are to be ranged in a consistent system; or to construct justifiable sets of operations which can be intercalated between the starting-point and the issue of thought-processes, replacing the real intermediate links. Epistemology thus considers a logical substitute rather than real processes. For this logical substitute the term rational reconstruction has been introduced;[1] it seems an appropriate phrase to indicate the task of epistemology in its specific difference from the task of psychology. Many false objections and misunderstandings of modern epistemology have their source in not separating these two tasks; it will, therefore, never be a permissible objection to an epistemological construction that actual thinking does not conform to it.

In spite of its being performed on a fictive construction, we must retain the notion of the descriptive task of epistemology. The construction to be given is not arbitrary; it is bound to actual thinking by the postulate of correspondence. It is even, in a certain sense, a better way of thinking than actual thinking. In being set before the rational reconstruction, we have the feeling that only now do we understand what we think; and we admit that the rational reconstruction expresses what we mean, properly speaking. It is a remarkable psychological fact that there is such an advance toward understanding one’s own thoughts, the very fact which formed the basis of the maeutic of Socrates and which has remained since that time the basis of philosophical method; its adequate scientific expression is the principle of rational reconstruction.

If a more convenient determination of this concept of rational reconstruction is wanted, we might say that it corresponds to the form in which thinking processes are communicated to other persons instead of the form in which they are subjectively performed. The way, for instance, in which a mathematician publishes a new demonstration, or a physicist his logical reasoning in the foundation of a new theory, would almost correspond to our concept of rational reconstruction; and the well-known difference between the thinker’s way of finding this theorem and his way of presenting it before a public may illustrate the difference in question. I shall introduce the terms context of discovery and context of justification to mark this distinction. Then we have to say that epistemology is only occupied in constructing the context of justification. But even the way of presenting scientific theories is only an approximation to what we mean by the context of justification. Even in the written form scientific expositions do not always correspond to the exigencies of logic or suppress the traces of subjective motivation from which they started. If the presentation of the theory is subjected to an exact epistemological scrutiny, the verdict becomes still more unfavorable. For scientific language, being destined like the language of daily life for practical purposes, contains so many abbreviations and silently tolerated inexactitudes that a logician will never be fully content with the form of scientific publications. Our comparison, however, may at least indicate the way in which we want to have thinking replaced by justifiable operations; and it may also show that the rational reconstruction of knowledge belongs to the descriptive task of epistemology. It is bound to factual knowledge in the same way that the exposition of a theory is bound to the actual thoughts of its author.

In addition to its descriptive task, epistemology is concerned with another purpose which may be called its critical task. The system of knowledge is criticized; it is judged in respect of its validity and its reliability. This task is already partially performed in the rational reconstruction, for the Active set of operations occurring here is chosen from the point of view of justifiability; we replace actual thinking by such operations as are justifiable, that is, as can be demonstrated as valid. But the tendency to remain in correspondence with actual thinking must be separated from the tendency to obtain valid thinking; and so we have to distinguish between the descriptive and the critical task. Both collaborate in the rational reconstruction. It may even happen that the description of knowledge leads to the result that certain chains of thoughts, or operations, cannot be justified; in other words, that even the rational reconstruction contains unjustifiable chains, or that it is not possible to intercalate a justifiable chain between the starting-point and the issue of actual thinking. This case shows that the descriptive task and the critical task are different; although description, as it is here meant, is not a copy of actual thinking but the construction of an equivalent, it is bound by the postulate of correspondence and may expose knowledge to criticism.

The critical task is what is frequently called analysis of science; and as the term “logic” expresses nothing else, at least if we take it in a sense corresponding to its use, we may speak here of the logic of science. The well-known problems of logic belong to this domain; the theory of the syllogism was built up to justify deductive thinking by reducing it to certain justifiable schemes of operation, and the modern theory of the tautological character of logical formulas is to be interpreted as a justification of deductive thinking as conceived in a more general form. The question of the synthetic a priori, which has played so important a role in the history of philosophy, also falls into this frame; and so does the problem of inductive reasoning, which has given rise to more than one “inquiry concerning human understanding.” Analysis of science comprehends all the basic problems of traditional epistemology; it is, therefore, in the foreground of consideration when we speak of epistemology.

The inquiries of our book will belong, for the most part, to the same domain. Before entering upon them, however, we may mention a result of rather general character which has been furnished by previous investigations of this kind—a result concerning a distinction without which the process of scientific knowledge cannot be understood. Scientific method is not, in every step of its procedure, directed by the principle of validity; there are other steps which have the character of volitional decisions. It is this distinction which we must emphasize at the very beginning of epistemological investigations. That the idea of truth, or validity, has a directive influence in scientific thinking is obvious and has at all times been noticed by epistemologists. That there are certain elements of knowledge, however, which are not governed by the idea of truth, but which are due to volitional resolutions, and though highly influencing the makeup of the whole system of knowledge, do not touch its truth-character, is less known to philosophical investigators. The presentation of the volitional decisions contained in the system of knowledge constitutes, therefore, an integral part of the critical task of epistemology. To give an example of volitional decisions, we may point to the so-called conventions, e.g., the convention concerning the unit of length, the decimal system, etc. But not all conventions are so obvious, and it is sometimes a rather difficult problem to find out the points which mark conventions. The progress of epistemology has been frequently furthered by the discovery of the conventional character of certain elements taken, until that time, as having a truth-character; Helmholtz’ discovery of the arbitrariness of the definition of spatial congruence, Einstein’s discovery of the relativity of simultaneity, signify the recognition that what was deemed a statement is to be replaced by a decision. To find out all the points at which decisions are involved is one of the most important tasks of epistemology.

The conventions form a special class of decisions; they represent a choice between equivalent conceptions. The different systems of weights and measures constitute a good example of such an equivalence; they illustrate the fact that the decision in favor of a certain convention does not influence the content of knowledge. The examples chosen from the theory of space and time previously mentioned are likewise to be ranked among conventions. There are decisions of another character which do not lead to equivalent conceptions but to divergent systems; they may be called volitional bifurcations. Whereas a convention may be compared to a choice between different ways leading to the same place, the volitional bifurcation resembles a bifurcation of ways which will never meet again. There are some volitional bifurcations of an important character which stand at the very entrance of science: these are decisions concerning the aim of science. What is the purpose of scientific inquiry? This is, logically speaking, a question not of truth-character but of volitional decision, and the decision determined by the answer to this question belongs to the bifurcation type. If anyone tells us that he studies science for his pleasure and to fill his hours of leisure, we cannot raise the objection that this reasoning is “a false statement”—it is no statement at all but a decision, and everybody has the right to do what he wants. We may object that such a determination is opposed to the normal use of words and that what he calls the aim of science is generally called the aim of play—this would be a true statement. This statement belongs to the descriptive part of epistemology; we can show that in books and discourses the word “science” is always connected with “discovering truth,” sometimes also with “foreseeing the future.” But, logically speaking, this is a matter of volitional decision. It is obvious that this decision is not a convention because the two conceptions obtained by different postulates concerning the aims of science are not equivalent; it is a bifurcation. Or take a question as to the meaning of a certain concept say, causality, or truth, or meaning itself. Logically speaking this is a question of a decision concerning the limitation of a concept, although, of course, the practice of science has already decided about this limitation in a rather precise way. In such a case, it must be carefully examined whether the decision in question is a convention or a bifurcation. The limitation of a concept may be of a conventional character, i.e., different limitations may lead to equivalent systems.

The character of being true or false belongs to statements only, not to decisions. We can, however, co-ordinate with a decision certain statements concerning it; and, above all, there are two types of statements which must be considered. The first one is a statement of the type we have already mentioned; it states which decision science uses in practice. It belongs to descriptive epistemology and is, therefore, of a sociological character. We may say that it states an object fact, i.e., a fact belonging to the sphere of the objects of knowledge,[2] a sociological fact being of this type. It is, of course, the same type of fact with which natural science deals. The second statement concerns the fact that, logically speaking, there is a decision and not a statement; this kind of fact may be called a logical fact. There is no contradiction in speaking here of a fact concerning a decision; although a decision is not a fact, its character of being a decision is a fact and may be expressed in a statement. That becomes obvious by the cognitional character of such a statement; the statement may be right or wrong, and in some cases the wrong statement has been maintained for centuries, whereas the right statement was discovered only recently. The given examples of Helmholtz’ and Einstein’s theories of space and time may illustrate this. But the kind of fact maintained here does not belong to the sphere of the objects of science, and so we call it a logical fact. It will be one of our tasks to analyze these logical facts and to determine their logical status; but for the present we shall use the term “logical fact” without further explanation.

The difference between statements and decisions marks a point at which the distinction between the descriptive task and the critical task of epistemology proves of utmost importance. Logical analysis shows us that within the system of science there are certain points regarding which no question as to truth can be raised, but where a decision is to be made; descriptive epistemology tells us what decision is actually in use. Many misunderstandings and false pretensions of epistemology have their origin here. We know the claims of Kantianism, and Neo-Kantianism, to maintain Euclidean geometry as the only possible basis of physics; modern epistemology showed that the problem as it is formulated in Kantianism is falsely constructed, as it involves a decision which Kant did not see. We know the controversies about the “meaning of meaning”; their passionate character is due to the conviction that there is an absolute meaning of meaning which we must discover, whereas the question can only be put with respect to the concept of meaning corresponding to the use of science, or presupposed in certain connections. But we do not want to anticipate the discussion of this problem, and our later treatment of it will contain a more detailed explanation of our distinction between statements and decisions.

The concept of decision leads to a third task with which we must charge epistemology. There are many places where the decisions of science cannot be determined precisely, the words or methods used being too vague; and there are others in which two or even more different decisions are in use, intermingling and interfering within the same context and confusing logical investigations. The concept of meaning may serve as an example; simpler examples occur in the theory of measurement. The concrete task of scientific investigation may put aside the exigencies of logical analysis; the man of science does not always regard the demands of the philosopher. It happens, therefore, that the decisions presupposed by positive science are not clarified. In such a case, it will be the task of epistemology to suggest a proposal concerning a decision; and we shall speak, therefore, of the advisory task of epistemology as its third task. This function of epistemology may turn out to be of great practical value; but it must be kept clearly in mind that what is to be given here is a proposal and not a determination of a truth-character. We may point out the advantages of our proposed decision, and we may use it in our own expositions of related subjects; but never can we demand agreement to our proposal in the sense that we can demand it for statements which we have proven to be true.

There is, however, a question regarding facts which is to be considered in connection with the proposal of a decision. The system of knowledge is interconnected in such a way that some decisions are bound together; one decision, then, involves another, and, though we are free in choosing the first one, we are no longer free with respect to those following. We shall call the group of decisions involved by one decision its entailed decisions. To give a simple example: the decision for the English system of measures leads to the impossibility of adding measure numbers according to the technical rules of the decimal system; so the renunciation of these rules would be an entailed decision. Or a more complicated example: the decision expressed in the acceptance of Euclidean geometry in physics may lead to the occurrence of strange forces, “universal forces,” which distort all bodies to the same extent, and may lead to even greater inconveniences concerning the continuous character of causality.[3] The discovery of interconnections of this kind is an important task of epistemology, the relations between different decisions being frequently hidden by the complexity of the subject; it is only by adding the group of entailed decisions that a proposal respecting a new decision becomes complete.

The discovery of entailed decisions belongs to the critical task of epistemology, the relation between decisions being of the kind called a logical fact. We may therefore reduce the advisory task of epistemology to its critical task by using the following systematic procedure: we renounce making a proposal but instead construe a list of all possible decisions, each one accompanied by its entailed decisions. So we leave the choice to our reader after showing him all factual connections to which he is bound. It is a kind of logical signpost which we erect; for each path we give its direction together with all connected directions and leave the decision as to his route to the wanderer in the forest of knowledge. And perhaps the panderer will be more thankful for such a signpost than he would be for suggestive advice directing him into a certain path. Within the frame of the modern philosophy of science there is a movement bearing the name of conventionalism; it tries to show that most of the epistemological questions contain no questions of truth-character but are to be settled by arbitrary decisions. This tendency, and above all, in its founder Poincare, had historical merits, as it led philosophy to stress the volitional elements of the system of knowledge which had been previously neglected. In its further development, however, the tendency has largely trespassed beyond its proper boundaries by highly exaggerating the part occupied by decisions in knowledge. The relations between different decisions were overlooked, and the task of reducing arbitrariness to a minimum by showing the logical interconnections between the arbitrary decisions was forgotten. The concept of entailed decisions, therefore, may be regarded as a dam erected against extreme conventionalism; it allows us to separate the arbitrary part of the system of knowledge from its substantial content, to distinguish the subjective and the objective part of science. The relations between decisions do not depend on our choice but,are prescribed by the rules of logic, or by the laws of nature.

It even turns out that the exposition of entailed decisions settles many quarrels about the choice of decisions. Certain basic decisions enjoy an. almost universal assent; and, if we succeed in showing that one of the contended decisions is entailed by such a basic decision, the acceptance of the first decision will be secured. Basic decisions of such a kind are, for instance, the principle that things of the same kind shall receive the same names, or the principle that science is to furnish methods for foreseeing the future as well as possible (a demand which will be accepted even if science is also charged with other tasks). I will not say that these basic decisions must be assumed and retained in every development of science; what I want to say is only that these decisions are actually maintained by most people and that many quarrels about decisions are caused only by not seeing the implication which leads from the basic decisions to the decision in question.

The objective part of knowledge, however, may be freed from volitional elements by the method of reduction transforming the advisory task of epistemology into the critical task. We may state the connection in the form of an implication: If you choose this decision, then you are obliged to agree to this statement, or to this other decision. This implication, taken as a whole, is free from volitional elements; it is the form in which the objective part of knowledge finds its expression.

  1. The term rationale Nachkonstruktion was used by Carnap in Der logische Aufbau der Welt (Berlin and Leipzig, 1928).
  2. The term “objective fact” taken in the original sense of the word "objective” would express the same point; but we avoid it, as the word “objective” suggests an opposition to “subjective,” an opposition which we do not intend.
  3. Cf. the author’s Philosophie der Raum-Zeit-Lehre (Berlin: De Gray ter, 1928), § 12.