Page:1902 Encyclopædia Britannica - Volume 27 - CHI-ELD.pdf/512

This page needs to be proofread.

468

D I P H T H E R I A

Several facts are roughly indicated by this table. It begins with an extremely severe epidemic, which has not been approached since. Then follows a fall extending over twenty years. On the whole this diminution was progressive, though not in reality so steady as the decennial grouping makes it appear, being interrupted by smaller oscillations in single years and groups of years. Still the main fact holds good. After 1880 an opposite movement began, likewise interrupted by minor oscillations, but on the whole progressive, and culminating in the year 1893 with a death-rate of 389, the highest recorded since 1865. After 1896 a marked fall again took place. This is partly accounted for by the use of antitoxin, which only began on a considerable scale in 1895, and did not become general until a year or two later at least. Probably its effects are only now being fully felt, and they undoubtedly affect the Registrar-General’s returns, which record mortality, not prevalence—that is to say, the number of deaths, not of cases. The factor, therefore, must not be forgotten, but it can hardly account for the whole of the diminution. On the whole, we get clear evidence of an epidemic rise and fall, which may serve to dispose of some erroneous conceptions. The belief, held until recently, that diphtheria is steadily increasing in Great Britain was obviously premature ; it did rise over a series of years, but has now ebbed again. Moreover, the general prevalence during the last thirty years has been notably less than in the previous twelve years. Yet it is during years since 1870 that compulsory education has been in existence and main drainage chiefly carried out. It follows that neither school attendance nor sewer gas exercises such an important influence over the epidemicity of diphtheria as some other conditions. What are those conditions? Dr Newsholme has advanced the theory, based on an elaborate examination of statistics in various countries, that the activity of diphtheria is connected with the rainfall, and he lays down the following general induction from the facts : “ Diphtheria only becomes epidemic in years in which the rainfall is deficient, and the epidemics are on the largest scale when three or more years of deficient rainfall follow each other.” He points out that the comparative rarity of diphtheria in tropical climates, which are characterized by excessive rainfall, and its greater prevalence in continental than in insular countries, confirm his theory. His observations seem quite contrary to the view laid down by various authorities, and hitherto generally accepted, that wet weather favours diphtheria. The two, however, are not irreconcilable. The key to the problem—and possibly to many other epidemiological problems—may perhaps be found in the movements of the subsoil water. It has been suggested by different observers, and particularly by Mr M. A. Adams, who has for some years made a study of the subsoil water at Maidstone, that there is a definite connexion between it and diphtheria. In England the underground water normally reaches its lowest level at the end of the summer; then it gradually rises, fed by percolation from the winter rains, reaching a maximum level about the end of March, after which it gradually sinks. This maximum level Mr Adams calls the annual spring cleaning of the soil, and his observations go to show that when the normal movement is arrested or disturbed, diphtheria becomes active. How that is what happens in periods of drought. The underground water does not rise to its usual level, and there is no spring cleaning. The hypothesis, then, is this: The diphtheria bacillus lives in the soil, but is “drowned out ” in wet periods by the subsoil water. In droughty ones it lives and flourishes in the warm, dry soil; then when rain comes, it is driven out with the ground air into the houses. This process will continue for some time, so that epidemic outbreaks may well seem to be associated with wet. But

they begin in drought, and are stopped by long-continued periods of copious rainfall. This is quite in keeping with the observed fact that diphtheria is a seasonal disease, always most prevalent in the last quarter of the year. The summer develops the poison in the soil, the autumnal rains bring it out. The fact that the same cause does not produce the same effect in tropical countries may perhaps be explained by the extreme violence of the alternations, which are too great to suit this particular micro-organism, or possibly the regularity of the rainfall prevents its development. The foregoing hypothesis is supported by a good deal of evidence, and notably by the concurrence of the great epidemic or pandemic prevalence in Great Britain, culminating in 1859, with a prolonged period of exceptionally deficient rainfall. Again, the highest death-rate registered since 1865 was in 1893, a year of similarly exceptional drought. But it is no more than an hypothesis, and the fate of former theories is a warning against drawing conclusions from statistics and records extending over too short a period of time. The warning is particularly necessary in connexion with meteorological conditions, which are apt to upset all calculations. As it happens, a period of deficient rainfall even greater than that of 1854-58 has recently been experienced. It began in 1893 and culminated in the extraordinary season of 1899. The dry years were 1893, 1895, 1896, 1898, and 1899, and the deficiency of rainfall was not made good by any considerable excess in 1894 and 1897. It surpassed all records at Greenwich; streams and wells ran dry all over the country, and the flow of the Thames and Lea was reduced to the lowest point ever recorded. There should be, according to the theory, at least a very large increase in the prevalence of diphtheria. To a certain extent it has held good. There was a marked rise in 1893-96 over the preceding period, though not so large as might have been expected, but it was followed by a decided fall in 1897-98. The experience of 1898 contradicts, that of 1899 supports, the theory. Further light is therefore required; but perhaps the failure of the recent drought to produce results at all comparable with the epidemic of the ’fifties may be due to variations in the resistance of the disease, which differs widely in different years. It may also be due in part to improved sanitation, to the notification of infectious diseases, the use of isolation hospitals, which have greatly developed in quite recent years, and, lastly, to the beneficial effects of antitoxin. If these be the real explanations, then scientific and administrative work has not been thrown away after all in combating this very painful and fatal enemy of the young. The conditions governing the general prevalence of diphtheria, and its epidemic rise and fall, which have just been discussed, do not touch the question of actual dissemination. The contagion is spread by jnation. means which are in constant operation, whether the general amount of disease is great or small. Water, so important in some epidemic diseases, is believed not to be one of them, though a negative proof based on absence of evidence cannot be accepted as conclusive. On the other hand, milk is undoubtedly a means of dissemination. Several outbreaks of an almost explosive character, besides minor extensions of disease from one place to another, have been traced to this cause. Milk may be contaminated in various ways,—at the dairy, for instance, or on the way to customers, —but several cases, investigated by the officers of the Local Government Board and others, have been thought to point to infection from cows suffering from a diphtheritic affection of the udder. The part played by aerial convection is undetermined, but there is no reason to suppose that the infecting material is conveyed any distance by wind or air currents. Instances which seem to point to the contrary