Page:A History of Mathematics (1893).djvu/114

This page has been proofread, but needs to be validated.
THE HINDOOS.
95

thinks he can see traces of Diophantine methods. Some technical terms betray their Greek origin. Even if it be true that the Indians borrowed from the Greeks, they deserve great credit for improving and generalising the solutions of linear and quadratic equations. Bhaskara advances far beyond the Greeks and even beyond Brahmagupta when he says that "the square of a positive, as also of a negative number, is positive; that the square root of a positive number is twofold, positive and negative. There is no square root of a negative number, for it is not a square." Of equations of higher degrees, the Indians succeeded in solving only some special cases in which both sides of the equation could be made perfect powers by the addition of certain terms to each.

Incomparably greater progress than in the solution of determinate equations was made by the Hindoos in the treatment of indeterminate equations. Indeterminate analysis was a subject to which the Hindoo mind showed a happy adaptation. We have seen that this very subject was a favourite with Diophantus, and that his ingenuity was almost inexhaustible in devising solutions for particular cases. But the glory of having invented general methods in this most subtle branch of mathematics belongs to the Indians. The Hindoo indeterminate analysis differs from the Greek not only in method, but also in aim. The object of the former was to find all possible integral solutions. Greek analysis, on the other hand, demanded not necessarily integral, but simply rational answers. Diophantus was content with a single solution; the Hindoos endeavoured to find all solutions possible. Aryabhatta gives solutions in integers to linear equations of the form , where a, b, c are integers. The rule employed is called the pulveriser. For this, as for most other rules, the Indians give no proof. Their solution is essentially the same as the one of