Page:A History of Mathematics (1893).djvu/247

This page has been proofread, but needs to be validated.
228
A HISTORY OF MATHEMATICS.

Various letters of Newton, Collins, and others, up to the beginning of 1676, state that Newton invented a method by which tangents could be drawn without the necessity of freeing their equations from irrational terms. Leibniz announced in 1674 to Oldenburg, then secretary of the Royal Society, that he possessed very general analytical methods, by which he had found theorems of great importance on the quadrature of the circle by means of series. In answer, Oldenburg stated Newton and James Gregory had also discovered methods of quadratures, which extended to the circle. Leibniz desired to have these methods communicated to him; and Newton, at the request of Oldenburg and Collins, wrote to the former the celebrated letters of June 13 and October 24, 1676. The first contained the Binomial Theorem and a variety of other matters relating to infinite series and quadratures; but nothing directly on the method of fluxions. Leibniz in reply speaks in the highest terms of what Newton had done, and requests further explanation. Newton in his second letter just mentioned explains the way in which he found the Binomial Theorem, and also communicates his method of fluxions and fluents in form of an anagram in which all the letters in the sentence communicated were placed in alphabetical order. Thus Newton says that his method of drawing tangents was

6 a cc d œ 13 e ff 7 i 3 1 9n 4 o 4 q rr 4 s 9 t 12 v x.

The sentence was, "Data æquatione quotcunque fluentes quantitates involvente fluxiones invenire, et vice versa." ("Having any given equation involving never so many flowing quantities, to find the fluxions, and vice versa.") Surely this anagram afforded no hint. Leibniz wrote a reply to Collins, in which, without any desire of concealment, he explained the principle, notation, and the use of the differential calculus.

The death of Oldenburg brought this correspondence to a