Page:A Treatise on Electricity and Magnetism - Volume 1.djvu/462

This page has been proofread, but needs to be validated.
420
RESISTANCE.
[365.

The results given by Paalzow are as follow:—

Mixtures of Sulphuric Acid and Water.
Temp. Resistance compared
with mercury.
H₂SO₄ 15°C  96950
H₂SO₄ +  14 H²O 19°C  14157
H₂SO₄ +  13 H²O 22°C  13310
H₂SO₄ + 499 H²O 22°C 184773
Sulphate of Zinc and Water.
ZnSO₄ +  23 H²O 23°C 194400
ZnSO₄ +  24 H²O 23°C 191000
ZnSO₄ + 105 H²O 23°C 354000
Sulphate of Copper and Water.
CuSO₄ +  45 H²O 22°C 202410
CuSO₄ + 105 H²O 22°C 339341
Sulphate of Magnesium and Water.
MgSO₄ +  34 H²O 22°C 199180
MgSO₄ + 107 H²O 22°C 324600
Hydrochloric Acid and Water.
HCl   +  15 H²O 23°C  13626
HCl   + 500 H²O 23°C  86679

365.] MM. F. Kohlrausch and W. A. Nippoldt[1] have determined the resistance of mixtures of sulphuric acid and water. They used alternating magneto-electric currents, the electromotive force of which varied from 12 to 174 of that of a Grove's cell, and by means of a thermoelectric copper-iron pair they reduced the electromotive force to 1429000 of that of a Grove's cell. They found that Ohm's law was applicable to this electrolyte throughout the range of these electromotive forces.

The resistance is a minimum in a mixture containing about one-third of sulphuric acid.

The resistance of electrolytes diminishes as the temperature increases. The percentage increment of conductivity for a rise of 1°C is given in the following table.

  1. Pogg., Ann. cxxxviii, p. 286, Oct. 1869.