Page:A history of the theories of aether and electricity. Whittacker E.T. (1910).pdf/392

This page has been proofread, but needs to be validated.

( 372 )

Chapter XI.

Conduction in Solutions and Gases, from Faraday to J. J. Thomson


The hypothesis which Grothuss and Davy had advanced[1] to explain the decomposition of electrolytes was open to serious objection in more than one respect. Since the electric force was supposed first to dissociate the molecules of the electrolyte into ions, and afterwards to set them in motion toward the electrodes, it would seem reasonable to expect that doubling the electric force would double both the dissociation of the molecules and the velocity of the ions, and would therefore quadruple the electrolysis—an inference which is not verified by observation. Moreover it might be expected, on Grothuss' theory, that some definite magnitude of electromotive force would be requisite for the dissociation, and that no electrolysis at all would take place when the electromotive force was below this value, which again is contrary to experience.

A way of escape from these difficulties was first indicated, in 1850, by Alex. Williamson,[2] who suggested that in compound liquids decompositions and recombinations of the molecules are continually taking place throughout the whole mass of the liquid, quite independently of the application of an external electric force. An atom of one element in the compound is thus paired now with one and now with another atom of another element, and in the intervals between these alliances the atom may be regarded as entirely free. In 1857 this idea was made by

  1. Cf. p. 78.
  2. l'hil. Mag. xxxvii (1850), p. 350; Liebig's Annalen d. Chem, u. Pharm. 1xxvii (1851) p. 87.