Page:A short history of astronomy(1898).djvu/151

This page has been validated.
§§ 79, 80]
The Motion of the Earth
105

the earth turns in the second case, but that the two rotations are in opposite directions. A similar explanation evidently applies to more complicated cases.

Hence the apparent daily rotation of the celestial sphere about an axis through the poles would be produced equally well, either by an actual rotation of this character, or by a rotation of the earth about an axis also passing through the poles, and at the same rate, but in the opposite direction, i.e. from west to east. This is the first motion which Coppernicus assigns to the earth.

79. The apparent annual motion of the sun, in accordance with which it appears to revolve round the earth in a path which is nearly a circle, can be equally well explained by supposing the sun to be at rest, and the earth to describe an exactly equal path round the sun, the direction of the revolution being the same. This is virtually the second motion which Coppernicus gives to the earth, though, on account of a peculiarity in his geometrical method, he resolves this motion into two others, and combines with one of these a further small motion which is required for precession.[1]

80. Coppernicus's conception then is that the earth revolves round the sun in the plane of the ecliptic, while rotating daily on an axis which continually points to the poles of the celestial sphere, and therefore retains (save for precession) a fixed direction in space.

It should be noticed that the two motions thus assigned to the earth are perfectly distinct; each requires its own proof, and explains a different set of appearances. It was quite possible, with perfect consistency, to believe in one motion without believing in the other, as in fact a very few of the 16th-century astronomers did (chapter v., § 105).

In giving his reasons for believing in the motion of the

  1. To Coppernicus, as to many of his contemporaries, as well as to the Greeks, the simplest form of a revolution of one body round another was a motion in which the revolving body moved as if rigidly attached to the central body. Thus in the case of the earth the second motion was such that the axis of the earth remained inclined at a constant angle to the line joining earth and sun, and therefore changed its direction in space. In order then to make the axis retain a (nearly) fixed direction in space, it was necessary to add a third motion.