Page:A short history of astronomy(1898).djvu/359

This page has been validated.
§ 231]
Euler and Clairaut
293

mathematics; problems of abstract dynamics, of optics, of the motion of fluids, and of astronomy were all in turn subjected to his analysis and solved. The extent of his writings is shewn by the fact that, in addition to several books, he wrote about 800 papers on mathematical and physical subjects; it is estimated that a complete edition of his works would occupy 25 quarto volumes of about 600 pages each.

Euler's first contribution to astronomy was an essay on the tides which obtained a share of the Academy prize for 1740 already referred to, Daniel Bernouilli and Maclaurin (chapter x., § 196) being the other two Newtonians. The problem of the tides was, however, by no means solved by any of the three writers.

He gave two distinct solutions of the problem of three bodies in a form suitable for the lunar theory, and made a number of extremely important and suggestive though incomplete contributions to planetary theory. In both subjects his work was so closely connected with that of Clairaut and D'Alembert that it is more convenient to discuss it in connection with theirs.

231. Alexis Claude Clairaut, born at Paris in 1713, belongs to the class of precocious geniuses. He read the Infinitesimal Calculus and Conic Sections at the age of ten, presented a scientific memoir to the Academy of Sciences before he was 13, and published a book containing some important contributions to geometry when he was 18, thereby winning his admission to the Academy.

Shortly afterwards he took part in Maupertuis' expedition to Lapland (chapter x., § 221), and after publishing several papers of minor importance produced in 1743 his classical work on the figure of the earth. In this he discussed in a far more complete form than either Newton or Maclaurin the form which a rotating body like the earth assumes under the influence of the mutual gravitation of its parts, certain hypotheses of a very general nature being made as to the variations of density in the interior; and deduced formulae for the changes in different latitudes of the acceleration due to gravity, which are in satisfactory agreement with the results of pendulum experiments.

Although the subject has since been more elaborately