This page has been proofread, but needs to be validated.

number; which is clearly absurd. Hence the relative velocity of the two systems is less than c, since v = c obviously leads to an absurdity.

This conclusion concerning the maximum velocity of a material body brings up important considerations concerning the essential nature of mass and material things. How shall we conceive of matter so that it should have this astonishing property?

In the present state of science any answer to this question must necessarily be of a speculative nature; but it is probably worth while to mention briefly a theory of mass which is consistent with the existence of a maximum velocity for a material body.

Let us suppose that the mass of a piece of matter is due to a kind of strain in the ether, and that this strain is principally localized in a relatively small portion of space, but that from this center of localization there go out to infinity in all directions lines of strain which belong essentially to the piece of matter. (We make no assumption as to how this strain is set up; it may be due largely or entirely to the motion of electrons in the molecules of the matter.) Suppose that these lines of strain, except in the immediate neighborhood of the center of localization, are of such nature as to escape detection by our usual methods. Suppose further that when the piece of matter is moved, that is, when the center of localization is displaced, these lines of strain have a corresponding displacement, but that the ether of space resists this displacement, the degree of resistance depending on the velocity.

If the mass of matter is due to such a strain in the ether it is natural to suppose that mass is a measure of the amount of that strain. But, on our present hypothesis, we see that when matter is moved through space there is an increase of the strain on the ether due to such motion. This manifests itself to us in the way of an increase in the mass of the given piece of matter.

Moreover, when the body is in motion it is natural to suppose that these lines of strain are not distributed evenly in all directions. On account of this fact it would not be a matter for surprise if the mass of a moving body were different in different directions.

It thus appears that appropriate hypotheses (which have nothing in them inherently unnatural) would lead us to expect the same descriptive properties of mass as those which are actually found to exist if one accepts the postulates of relativity. Hence we conclude that there is nothing a priori improbable in the conclusions of relativity concerning the nature of mass. Therefore if we find satisfactory grounds for accepting the initial postulates of relativity, we shall not throw them overboard because of the strange conclusions concerning mass to which they have led us.