This page has been proofread, but needs to be validated.

whether a result predicted by it would be found by actual test. For a long time it had been supposed that the known facts about light, electricity and magnetism required for their explanation the theory that the ether of space is stationary. Such a conclusion led to the belief that the velocity of the earth through the ether could be determined by optical experiments. Thus it was predicted that the time which would be required for a beam of light to pass a given distance and return would be different in the two cases when the path of light was parallel to the direction of the motion and when it was perpendicular to this direction. The object of the Michelson-Morley experiment, as we have said, was to put this prediction to a crucial test.

The experiment was a bold one, seeing that the velocities to be measured were so little different; and yet it was carried out in such a brilliant way as to permit no serious doubt of the accuracy of the results. The difference of velocity predicted by theory was found by experiment not to exist; there was not the slightest difference of time in the passage of light along two paths of equal length, one in a direction parallel to the earth's motion and the other in a direction perpendicular to it.

There are different points of view from which one may look at this experiment. In the theory of relativity it is taken in the light of an attempt to detect the earth's motion through space by means of the effect of this motion on terrestrial phenomena. So far as the experiment goes, it indicates that such motion cannot be detected in this way. Furthermore, no one has yet been able to devise an experiment by means of which the earth's motion through space can be detected by observations made on the earth alone. The question arises: Is it possible to have any such experiment at all? In the theory of relativity this question is answered in the negative. The Michelson-Morley experiment and other experiments are thus generalized into one of the fundamental laws or postulates of relativity, which may be stated as follows:

A. The uniform translatory motion of any system cannot be detected by an observer traveling with the system and making observations on it alone.

Another part of the fundamental basis of the theory of relativity is a principle which has long been familiar in the theory of light and has never been found in disagreement with experimental facts. It may be stated thus:

B. The velocity of light in free space is independent of the velocity of the source of light.

By means of laws A and B, taken in connection with certain principles universally accepted in the classical mechanics, it may be shown[1] that

  1. See a treatment by the author in the first paper referred to above.