This page has been proofread, but needs to be validated.
46
THE CONSERVATION OF ENERGY.

estimate and correct for this friction as accurately as possible; in fact, every precaution was taken to make the experiment successful.

61. Other experiments were made by Joule, in some of which a disc was made to rotate against another disc of cast-iron pressed against it, the whole arrangement being immersed in a cast-iron vessel filled with mercury. From all these experiments, Dr. Joule concluded that the quantity of heat produced by friction, if we can preserve and accurately measure it, will always be found proportional to the quantity of work expended He expressed this proportion by stating the number of units of work in kilogrammetres necessary to raise by 1° C. the temperature of one kilogramme of water. This was 424, as determined by his last and most complete experiments; and hence we may conclude that if a kilogramme of water be allowed to fall through 424 metres, and if its motion be then suddenly stopped, sufficient heat will be generated to raise the temperature of the water through 1° C, and so on, in the same proportion.

62. Now, if we take the kilogrammetre as our unit of work, and the heat necessary to raise a kilogramme of water 1° C. as our unit of heat, this proportion may be expressed by saying that one heat unit is equal to 424 units of work.

This number is frequently spoken of as the mechanical equivalent of heat; and in scientific treatises it is denoted by J., the initial of Dr. Joule's name.