This page has been proofread, but needs to be validated.
58
THE CONSERVATION OF ENERGY.

cases where a building has shown signs of bulging outwards, iron bars have been placed across it, and secured while in a heated state to the walls. On cooling, the iron contracted with great force, and the walls were thereby pulled together.

76. We are next brought to consider atomic forces, or those which lead to chemical union, and now let us see how these are influenced by heat. We have seen that heat causes a separation between the molecules of a body, that is to say, it increases the distance between two contiguous molecules, but we must not suppose that, meanwhile, the molecules themselves are left unaltered.

The tendency of heat to cause separation is not confined to increasing the distance between molecules, but acts also, no doubt, in increasing the distance between parts of the same molecule: in fact, the energy of heat is spent in pulling the constituent atoms asunder against the force of chemical affinity, as well as in pulling the molecules asunder against the force of cohesion, so that, at a very high temperature, it is probable that most chemical compounds would be decomposed, and many are so, even at a very moderate heat.

Thus the attraction between oxygen and silver is so slight that at a comparatively low temperature the oxide of silver is decomposed. In like manner, limestone, or carbonate of lime, is decomposed when subjected to the heat of a lime-kiln, carbonic acid being given off, while quick-lime remains behind. Now, in separating hetero-