Page:Dictionary of National Biography. Sup. Vol I (1901).djvu/128

This page has been proofread, but needs to be validated.
Armstrong
66
Armstrong

Cambridge University voted him an honorary LL.D. degree; in 1870 Oxford made him a D.C.L.; and in May 1878 the Society of Arts awarded to him the Albert medal ‘because of his distinction as an engineer and as a scientific man, and because by the development of the transmission of power hydraulically, due to his constant efforts extending over many years, the manufactures of this country have been greatly aided, and mechanical power beneficially substituted for most laborious and injurious labour.’

But these inventions far from exhausted Armstrong’s genius, and in middle life he applied his mind to improvements in the manufacture of the machinery of war, which brought him an equally wide and deserved reputation. It was just after the outbreak of the Crimean war in 1854 that Armstrong received at Elswick his first commission from the war office; this was to design submarine mines for the purpose of blowing up Russian ships that had been sunk in the harbour of Sebastopol. Armstrong’s mines proved very successful, but, as the war progressed, he turned his attention more especially to artillery. It is said that an incident in the battle of Inkerman (5 Nov. 1854) led him to devote his energies to the improvement of ordnance. In the following month he submitted to Sir James Graham a communication ‘suggesting the expediency of enlarging the ordinary rifle to the standard of a field-gun, and using elongated projectiles of lead’ (Industrial Resources of Tyne, Wear, and Tees, 1863). This was followed by an interview with the Duke of Newcastle, then secretary of state for war, who authorised him to make half a dozen guns according to his views.

Armstrong has himself described in detail the evolution of the gun which was soon to be widely known by his name. First, he considered exhaustively all possible materials, and selected shear steel and wrought iron. Then he proved experimentally that the ordinary method of making guns, by forging the metal into the form and boring a hole down it, was unsatisfactory. He adopted a construction more correct in principle, but more difficult of execution. The strength of a metal cylinder does not increase in the ratio of its thickness. A cylinder offers the greatest resistance to bursting when the exterior layers are in a state of tension, gradually increasing inwards past the neutral point till the internal layers are in a state of compression. Therefore an internal cylinder of steel was enclosed in a jacket made by twisting a wrought-iron bar, and welding the turns into a cylinder of internal diameter slightly smaller than the steel lining. The jacket was expanded by heat and slipped over the core, and contracting in cooling produced the desired distribution of tension. Other rings as necessary were in turn shrunk on this cylinder.

At the same time mechanical arrangements were contrived to counteract recoil, and to facilitate the pointing of the gun. Furthermore, and this was a device of the utmost importance, the gun was made to load at its back end. Armstrong invented both the screw and the wedge methods of closing the breech. In the former case a powerful screw pressed a breech-piece, carrying the vent, so as to close the tube. Then the rifling was effected by eight spiral grooves cut in the bore terminating at the slightly expanded loading chamber, the most suitable form and dimensions for which were reached after careful investigations. Lastly, with unwearied labour and infinite resource, he determined the best shape, dimensions, and charge for the bullet. The elongated form with an ogival head which he designed for the projectile has never been improved upon.

Armstrong’s first 3-pounder, built in accordance with these principles, was completed in July 1855. It was derided by the artillery officers as a ‘popgun.’ Thereupon Armstrong made a 6-pounder on the same principles, and he continued a series of experiments with it for a considerable time before submitting it to the war office. The earliest of his long series of patents, eleven in number, touching ordnance and projectiles, was dated 11 Feb. 1857; the second followed on 22 July 1857. At first the military authorities looked coldly upon Armstrong’s new gun, but its merit was too great to be put aside. On 16 Nov. 1858 the committee on rifled cannon, appointed by General Peel, reported in favour of Armstrong’s invention on every point.

Armstrong then behaved with patriotic generosity. He gave the nation his valuable patents as a free gift, and placed his talents at its command. In 1859 he accepted the appointment of engineer of rifled ordnance at Woolwich, and his great services to the state were acknowledged by his creation as knight bachelor and civil companion of the Bath (23 Feb. 1859).

On 25 Jan. 1859 the Elswick Ordnance Company was formed. The partners were Messrs. George Cruddas, Lambert, and the manager, George Rendel. Armstrong had no pecuniary interest in this new company, although its buildings were close to the Elswick engineering works. The Elswick Ordnance Company was established solely to