Page:Dictionary of National Biography volume 14.djvu/197

This page has been proofread, but needs to be validated.
Davy
191
Davy

knighted by the prince regent. On the day following he delivered his farewell lecture at the Royal Institution. The minutes of that institution inform us that on 5 April 1813 Davy begged leave to resign his situation of professor of chemistry, when Earl Spencer moved 'that, in order more strongly to mark the high sense entertained by this meeting of the merits of Sir H. Davy, he be elected honorary professor of chemistry.'

On 11 April 1812 Davy married Mrs. Apreece, the widow of Shuckburgh Ashby Apreece, and the daughter and heiress of Charles Kerr [see Davy, Jane, Lady] of Kelso. His biographer Dr. Paris remarks 'that other views of ambition than those presented by achievements in science had opened upon his mind; the wealth he was about to command might extend the sphere of his usefulness, and exalt him in the scale of society; his feelings became more aristocratic, he discovered charms in rank which had before escaped him, and he no longer viewed patrician distinction with philosophic indifference.'

Davy had already discovered the talents of Faraday, for whom he obtained an appointment as assistant in the laboratory of the Royal Institution. In October he went abroad, taking Faraday with him. Davy did not allow his independent position to interfere with his scientific inquiries. While abroad he sent seven papers to the Royal Society. He published his 'Elements of Chemical Philosophy,' and in March 1813 he issued his 'Elements of Agricultural Chemistry,' the substance of a course of lectures delivered for ten successive seasons before the board of agriculture. In 1813 Davy was evidently alarmed at its being supposed that a gunpowder which he had manufactured in partnership with J. G. Children and Burton was 'supposed to be sold by' him, and desires it to be made public that his assistance had been gratuitous. The correspondence on the 'Ramhurst gunpowder' is painfully significant of the growing influence of wealth and position. While travelling on the continent during the war, by permission of Napoleon, Davy was patronised by all the scientific men of the day. The favour of his company was invited by the Philomathic Society, at which thirty-three members were present, among whom were Ampère, Cuvier, Chevreuil, and Humboldt. At the dinner the toast of the Royal Society of London was given, to which Davy returned thanks. Ampère at this time furnished Davy with a small portion of iodine, recently discovered by Courtois. On 13 Dec. a letter was read by Cuvier, which he had received from Davy, giving a general view, of the chemical nature and relations of iodine, and in January 1814 he communicated to the Royal Society of London an elaborate memoir on the same element. On 13 Dec. 1813 Davy was elected a corresponding member of the first class of the Imperial Institute.

While in Italy Davy made experiments on the torpedo, and he worked in the laboratory of the Accademia del Cimento on the combustion of the diamond. The results were communicated to the Royal Society. At Pavia he met Volta, who awaited in full dress the arrival of Davy. On the introduction of the English philosopher, who was meanly dressed, Volta started back in astonishment, and for some moments was unable to address him. On 23 April 1813 Davy returned to London, having made experiments on the colours used by the ancients and several other matters of interest, the results of which he communicated to the Royal Society.

On 3 Aug. 1815 Davy acknowledges a letter which he had received from the Rev. Dr. Gray, directing his attention to the destruction of human life by explosions in working our coalmines. Davy gave immediate attention to the subject, and being supplied with specimens of firedamp by John Buddle of Newcastle [q. v.], he began to investigate its nature. On 31 Oct. 1815 Davy communicated to Dr. Gray that he had discovered a safe lamp, on 2 Nov. read a paper on the firedamp before the Royal Society, and on 14 Dec. he sent to his friend Dr. Gray some models of lamps and lanterns, based on his discovery that 'the firedamp will not explode in tubes or feeders of a certain small diameter.' Glass tubes were employed at first, but Davy soon found that metallic tubes, such as wire gauze, resisted equally well the passage of flame. This led to his surrounding the flame of his lamp with wire gauze. The explosive gas freely entered the lamp and exploded within it, the explosion not passing outward through the apertures of the wire. Davy's triumph was somewhat clouded by the claims put forward by Dr. Clanny and George Stephenson [q. v.] The lamp devised by Dr. Clanny in no respect resembled that of Davy [see Clanny, William Reid], and that of Stephenson differs from it in several particulars. Stephenson's lamp dates its origin from 21 Oct. 1815, and has many claims to attention. Buddle on 27 Oct. 1816 wrote to the Rev. Dr. Gray, informing him that at a meeting of the coal owners it had been suggested that a subscription should be made for the purpose of presenting to Davy a testimonial which would 'show distinctly the real opinion of the coal trade as to the merit of